2019高一数学知识点总结
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了2019高一数学知识点,希望大家喜欢。
第一章集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集. (3)集合与元素间的关系对象a与集合M的关系是aM,或者aM,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集
以上就是小编老师为大家准备的高一数学知识点,希望可以帮助到大家! 3、与角
终边相同的角的集合为360,kk
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边
第1页/共4页
读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
4、已知是第几象限角,确定*nn所在象限的方法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为n终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.公式一:设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与-的三角函数值之间的关系:
sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:
sin()=sincos()=-costan()=-tancot()=-cot公式五:利用公式一和公式三可以得到2与的三角函数值之间的关系:sin(2)=-sincos(2)=costan(2)=-tancot(2)=-cot 公式六:/2及3/2与的三角函数值之间的关系:
sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/
第2页/共4页
2-)=cotcot(3/2-)=tan(以上kZ)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tancot=1sincsc=1cossec=1商的关系:sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系:
sin^2()+cos^2()=11+tan^2()=sec^2()1+cot^2()=csc^2()两角和差公式⒉两角和与差的三角函数公式
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan+tantan(+)=1-tantantan-tantan(-)=1+tantan倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2=2sincoscos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()2tantan2=1-tan^2()半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公
式)1-cossin^2(/2)=21+coscos^2(/2)=21-costan^2(/2)=1+cos万能公式
第3页/共4页