23.(本题满分12分,每小题6分)
如图7,已知AD是△ABC的中线, M是AD的中点, 过A点作AE∥BC,CM的延 长线与AE相交于点E,与AB相交于点F. (1)求证:四边形AEBD是平行四边形; (2)如果AC=3AF,求证四边形AEBD是矩形.
23.证明:(1)∵AE//BC,∴∠AEM=∠DCM,∠EAM=∠CDM,……………………(1分)
又∵AM=DM,∴△AME≌△DMC,∴AE=CD,…………………………(1分) ∵BD=CD,∴AE=BD.……………………………………………………(1分) ∵AE∥BD,∴四边形AEBD是平行四边形.……………………………(2分)
B D
图7
C
F M E A
AFAE.…………………………………………………(1分) ?FBBCAFAE1 ∵AE=BD=CD,∴ ??,∴AB=3AF.……………………………(1分)
FBBC2(2)∵AE//BC,∴
∵AC=3AF,∴AB=AC,…………………………………………………………(1分) 又∵AD是△ABC的中线,∴AD⊥BC,即∠ADB=90°.……………………(1分) ∴四边形AEBD是矩形.……………………………………………………(1分)
静安区
23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD中, AC、DB交于点E, 点F在BC的延长线上,联结EF、DF,且∠DEF=∠ADC.
A D EFAB? (1)求证:; BFDBB
E 6 第23题图
C
F (2)如果BD2?2AD?DF,求证:平行四边形ABCD是矩形.
23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD,∴AD//BC ,AB//DC
∴∠BAD+∠ADC=180°,……………………………………(1分) 又∵∠BEF+∠DEF =180°, ∴∠BAD+∠ADC=∠BEF+∠DEF……(1分) ∵∠DEF=∠ADC∴∠BAD=∠BEF, …………………………(1分) ∵AB//DC, ∴∠EBF=∠ADB …………………………(1分) B F E A D EFAB∴△ADB∽△EBF ∴ ………………………(2分) ?BFDBADBE(2) ∵△ADB∽△EBF,∴, ………………………(1分) ?BDBF1在平行四边形ABCD中,BE=ED=BD
212∴AD?BF?BD?BE?BD
2第23题图
C
∴BD2?2AD?BF, ………………………………………(1分) 又∵BD?2AD?DF
∴BF?DF,△DBF是等腰三角形 …………………………(1分) ∵BE?DE∴FE⊥BD, 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD是矩形 …………………………(1分) 闵行区
23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)
如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.
(1)求证:BF?BC?AB?BD; (2)求证:四边形ADGF是菱形.
B F E
G
C
A D
2(第23题图)
7
23.证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.
∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.…………………………(1分) 又∵BD平分∠ABC,∴∠ABD=∠DBC.……………………………(1分) ∵∠ABF=∠C,∠ABD=∠DBC,
∴?ABF∽?CBD.…………………………………………………(1分) ∴
ABBF.………………………………………………………(1分) ?BCBD∴BF?BC?AB?BD.………………………………………………(1分) (2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)
∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,
∴?ABF≌?GBF.∴AF=FG,BA=BG.…………………………(1分) ∵BA=BG,∠ABD=∠GBD,BD=BD,
∴?ABD≌?GBD.∴∠BAD=∠BGD.……………………………(1分) ∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,
∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分) 又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分) ∴AF=FG.……………………………………………………………(1分) ∴四边形ADGF是菱形.……………………………………………(1分)
普陀区
23.(本题满分12分)
已知:如图9,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,
FG∥AD,且FG?EF.
(1)求证:四边形ABED是菱形; (2)联结AE,又知AC⊥ED,求证:
B
F E 图9
C G
A
D
1AE2?EFgED. 2
8
23.证明:
(1)∵ AD∥BC,DE∥AB,∴四边形ABED是平行四边形. ······ (2分)
∵FG∥AD,∴同理
FGCF?. ···················· (1分) ADCAEFCF? . ························ (1分) ABCAFGEF得= ADAB∵FG?EF,∴AD?AB. ···················· (1分) ∴四边形ABED是菱形. ····················· (1分) (2)联结BD,与AE交于点H.
∵四边形ABED是菱形,∴EH?1AE,BD⊥AE. ········ (2分) 2得?DHE?90o .同理?AFE?90o.
∴?DHE=?AFE. ······················· (1分) 又∵?AED是公共角,∴△DHE∽△AFE. ············ (1分)
EHDE?. ························· (1分) EFAE1∴AE2?EFgED. ······················· (1分) 2∴青浦区
23.(本题满分12分,第(1)、(2)小题,每小题6分)
如图7,在梯形ABCD 中,AD∥BC,对角线AC、BD 交于点M,点E在边 BC上,且
?DAE??DCB,联结AE,AE与BD交于点F.
(1)求证:DM2?MF?MB; (2)联结DE,如果BF?3FM,
求证:四边形ABED是平行四边形.
BAMDFEC图7
23.证明:(1)∵AD//BC,∴?DAE??AEB,··············· (1分)
∵?DCB??DAE,∴?DCB??AEB, ·········· (1分) ∴AE//DC, ························ (1分)
9
FMAM. ····················· (1分) ?MDMCAMDM∵AD//BC,∴, ················ (1分) ?MCMBFMDM∴, ····················· (1分) ?MDMB∴
即MD2?MF?MB.
(2)设FM=a,则BF=3a,BM=4a. ············· (1分)
由MD2?MF?MB,得MD2?a?4a,
∴MD?2a, ······················· (1分) ∴DF?BF?3a. ····················· (1分) ∵AD//BC,∴
AFDF??1, ················ (1分) EFBF∴AF?EF, ······················· (1分) ∴四边形ABED是平行四边形. ················· (1分)
松江区
23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)
如图,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于点E,
F是AB的中点,联结AE、EF,且AE⊥BE.
求证:(1)四边形BCEF是菱形;
(2)BE?AE?2AD?BC.
D E C
A
23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:
(1) ∵BE平分∠ABC,
∴∠ABE=∠CBE…………………………………………………1分 ∵AE⊥BE ∴∠AEB=90° ∵F是AB的中点
F
(第23题图)
B 10