好文档 - 专业文书写作范文服务资料分享网站

上海市各区2018届中考数学二模试卷精选汇编几何证明专题

天下 分享 时间: 加入收藏 我要投稿 点赞

23.(本题满分12分,每小题6分)

如图7,已知AD是△ABC的中线, M是AD的中点, 过A点作AE∥BC,CM的延 长线与AE相交于点E,与AB相交于点F. (1)求证:四边形AEBD是平行四边形; (2)如果AC=3AF,求证四边形AEBD是矩形.

23.证明:(1)∵AE//BC,∴∠AEM=∠DCM,∠EAM=∠CDM,……………………(1分)

又∵AM=DM,∴△AME≌△DMC,∴AE=CD,…………………………(1分) ∵BD=CD,∴AE=BD.……………………………………………………(1分) ∵AE∥BD,∴四边形AEBD是平行四边形.……………………………(2分)

B D

图7

C

F M E A

AFAE.…………………………………………………(1分) ?FBBCAFAE1 ∵AE=BD=CD,∴ ??,∴AB=3AF.……………………………(1分)

FBBC2(2)∵AE//BC,∴

∵AC=3AF,∴AB=AC,…………………………………………………………(1分) 又∵AD是△ABC的中线,∴AD⊥BC,即∠ADB=90°.……………………(1分) ∴四边形AEBD是矩形.……………………………………………………(1分)

静安区

23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD中, AC、DB交于点E, 点F在BC的延长线上,联结EF、DF,且∠DEF=∠ADC.

A D EFAB? (1)求证:; BFDBB

E 6 第23题图

C

F (2)如果BD2?2AD?DF,求证:平行四边形ABCD是矩形.

23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD,∴AD//BC ,AB//DC

∴∠BAD+∠ADC=180°,……………………………………(1分) 又∵∠BEF+∠DEF =180°, ∴∠BAD+∠ADC=∠BEF+∠DEF……(1分) ∵∠DEF=∠ADC∴∠BAD=∠BEF, …………………………(1分) ∵AB//DC, ∴∠EBF=∠ADB …………………………(1分) B F E A D EFAB∴△ADB∽△EBF ∴ ………………………(2分) ?BFDBADBE(2) ∵△ADB∽△EBF,∴, ………………………(1分) ?BDBF1在平行四边形ABCD中,BE=ED=BD

212∴AD?BF?BD?BE?BD

2第23题图

C

∴BD2?2AD?BF, ………………………………………(1分) 又∵BD?2AD?DF

∴BF?DF,△DBF是等腰三角形 …………………………(1分) ∵BE?DE∴FE⊥BD, 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD是矩形 …………………………(1分) 闵行区

23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)

如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.

(1)求证:BF?BC?AB?BD; (2)求证:四边形ADGF是菱形.

B F E

G

C

A D

2(第23题图)

7

23.证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.

∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.…………………………(1分) 又∵BD平分∠ABC,∴∠ABD=∠DBC.……………………………(1分) ∵∠ABF=∠C,∠ABD=∠DBC,

∴?ABF∽?CBD.…………………………………………………(1分) ∴

ABBF.………………………………………………………(1分) ?BCBD∴BF?BC?AB?BD.………………………………………………(1分) (2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)

∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,

∴?ABF≌?GBF.∴AF=FG,BA=BG.…………………………(1分) ∵BA=BG,∠ABD=∠GBD,BD=BD,

∴?ABD≌?GBD.∴∠BAD=∠BGD.……………………………(1分) ∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,

∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分) 又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分) ∴AF=FG.……………………………………………………………(1分) ∴四边形ADGF是菱形.……………………………………………(1分)

普陀区

23.(本题满分12分)

已知:如图9,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,

FG∥AD,且FG?EF.

(1)求证:四边形ABED是菱形; (2)联结AE,又知AC⊥ED,求证:

B

F E 图9

C G

A

D

1AE2?EFgED. 2

8

23.证明:

(1)∵ AD∥BC,DE∥AB,∴四边形ABED是平行四边形. ······ (2分)

∵FG∥AD,∴同理

FGCF?. ···················· (1分) ADCAEFCF? . ························ (1分) ABCAFGEF得= ADAB∵FG?EF,∴AD?AB. ···················· (1分) ∴四边形ABED是菱形. ····················· (1分) (2)联结BD,与AE交于点H.

∵四边形ABED是菱形,∴EH?1AE,BD⊥AE. ········ (2分) 2得?DHE?90o .同理?AFE?90o.

∴?DHE=?AFE. ······················· (1分) 又∵?AED是公共角,∴△DHE∽△AFE. ············ (1分)

EHDE?. ························· (1分) EFAE1∴AE2?EFgED. ······················· (1分) 2∴青浦区

23.(本题满分12分,第(1)、(2)小题,每小题6分)

如图7,在梯形ABCD 中,AD∥BC,对角线AC、BD 交于点M,点E在边 BC上,且

?DAE??DCB,联结AE,AE与BD交于点F.

(1)求证:DM2?MF?MB; (2)联结DE,如果BF?3FM,

求证:四边形ABED是平行四边形.

BAMDFEC图7

23.证明:(1)∵AD//BC,∴?DAE??AEB,··············· (1分)

∵?DCB??DAE,∴?DCB??AEB, ·········· (1分) ∴AE//DC, ························ (1分)

9

FMAM. ····················· (1分) ?MDMCAMDM∵AD//BC,∴, ················ (1分) ?MCMBFMDM∴, ····················· (1分) ?MDMB∴

即MD2?MF?MB.

(2)设FM=a,则BF=3a,BM=4a. ············· (1分)

由MD2?MF?MB,得MD2?a?4a,

∴MD?2a, ······················· (1分) ∴DF?BF?3a. ····················· (1分) ∵AD//BC,∴

AFDF??1, ················ (1分) EFBF∴AF?EF, ······················· (1分) ∴四边形ABED是平行四边形. ················· (1分)

松江区

23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)

如图,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于点E,

F是AB的中点,联结AE、EF,且AE⊥BE.

求证:(1)四边形BCEF是菱形;

(2)BE?AE?2AD?BC.

D E C

A

23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:

(1) ∵BE平分∠ABC,

∴∠ABE=∠CBE…………………………………………………1分 ∵AE⊥BE ∴∠AEB=90° ∵F是AB的中点

F

(第23题图)

B 10

上海市各区2018届中考数学二模试卷精选汇编几何证明专题

23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线,M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.23.证明:(1)∵AE//BC,∴∠AEM=∠DCM,∠EAM=
推荐度:
点击下载文档文档为doc格式
04twm5b40y3h0qq02ukg7f1wl0k4bu0152l
领取福利

微信扫码领取福利

微信扫码分享