K12学习教育资源
微专题06 卫星的变轨与追及问题 多星模型
卫星的变轨问题分析
1.卫星变轨的动力学原因
当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将做变轨运动;
Mmv2
(1)当卫星的速度突然增加时,G2<m,即万有引力不足以提供向心力,卫星将做离
rr心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v= 可知其运行速度比原轨道时减小.
GM,rMmv2
(2)当卫星的速度突然减小时,G2>m,即万有引力大于所需要的向心力,卫星将做
rr近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时,由v=
GM,可知其运行速度比原轨道时增大,卫星的发射和回收就是利用这一原理. r2.卫星变轨特征
(1)速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速,则v3>vB,又因
v1>v3,故有vA>v1>v3>vB.
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为
r3
r1、r2(半长轴)、r3,由开普勒第三定律2=k可知T1<T2<T3.
T(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.
(2016·天津卷)我国在2016年9月15日发射了“天宫二号”空间实验室,
之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( ) K12学习教育资源
K12学习教育资源
A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接 B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接 C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
解析:选C 若使飞船与空间实验室在同一轨道上运行,然后飞船加速,则由于飞船所受合力小于所需向心力,故飞船将脱离原轨道而进入更高的轨道,不能实现对接,选项A错误;若使飞船与空间实验室在同一轨道上运行,然后空间实验室减速,则由于空间实验室所受合力大于所需向心力,故空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,选项B错误;要想实现对接,可使飞船在比空间实验室半径小的轨道上加速,然后飞船将进入较高的轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C正确;若飞船在比空间实验室半径小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D错误.
(多选)“天宫一号”是中国第一个目标飞行器,随后发射的“神舟八号”
无人飞船已与它成功对接,它们的运行轨迹如图所示,假设“天宫一号”绕地球做圆周运动的轨道半径为r,周期为T,引力常量为G,则以下说法正确的是( )
A.根据题中条件可以计算出地球的质量
B.根据题中条件可以计算出地球对“天宫一号”的引力大小 C.在近地点P处,“神舟八号”的速度比“天宫一号”大
D.要实现“神舟八号”与“天宫一号”在近地点P处安全对接,需在靠近P处制动减速
M地m4π2r解析:选ACD 地球对“天宫一号”的万有引力提供向心力,G2=m2,得M地=
rT4πr23
GT2,故选项A正确;由于“天宫一号”的质量未知,故不能求出地球对“天宫一号”的
引力大小,选项B错误;在P点“神舟八号”的速度比“天宫一号”大,要实现安全对接(两者的速度相等),需对“神舟八号”制动减速,选项C、D正确. K12学习教育资源
K12学习教育资源
1.(2017·课标Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( )
A.周期变大 C.动能变大
B.速率变大 D.向心加速度变大
解析:C 天舟一号货运飞船与天宫二号空间实验室对接形成的组合体仍沿天宫二号原
2
Mmmv24π
来的轨道运行,根据G2=ma==mr2可知,组合体运行的向心加速度、速率、周期不rrT变,质量变大,则动能变大,选项C正确.
2.(2024·山西省实验中学月考)(多选)我国发射的“神舟八号”飞船与先期发射的“天宫一号”空间站实现了完美对接.已知“天宫一号”绕地球做圆轨道运动,轨道半径为
r,周期为T,引力常量为G.假设沿椭圆轨道运动的“神舟八号”环绕地球的运动方向与“天
宫一号”相同,远地点与“天宫一号”的圆轨道相切于某点P,并在这点附近实现对接,如图所示.则下列说法正确的是( )
A.根据题设条件可以计算出地球对“天宫一号”的引力大小 B.根据题中条件可以计算出地球的质量
C.要实现在远地点P处对接,“神舟八号”需在靠近P处之前点火减速 D.“神舟八号”的运动周期比“天宫一号”的小
223
Mm4π4πr解析:选BD 根据G2=mr2知,地球的质量M=,由于“天宫一号”的质量未
rTGT2知,无法求出地球对“天宫一号”的引力大小,故A错误,B正确.要实现在远地点P处对接,“神舟八号”需在靠近P处之前点火加速,使得万有引力等于向心力,故C错误.根据
r3
开普勒第三定律2=k,由于“神舟八号”轨道的半长轴小于“天宫一号”的轨道半径,则
T“神舟八号”的运动周期比“天宫一号”的小,故D正确.
卫星的追及问题
若某中心天体有两颗轨道共面的环绕天体,当两环绕天体与中心天体在同一直线上,且位于中心天体同一侧时相距最近;当两环绕天体与中心天体在同一直线上,且位于中心天体异侧时相距最远.如两环绕天体某时刻相距最近,则: K12学习教育资源
K12学习教育资源
(1)若经过时间t,两环绕天体与中心天体连线半径转过的角度相差2π的整数倍,则两环绕天体又相距最近;
(2)若经过时间t,两环绕天体与中心天体连线半径转过的角度相差π的奇数倍,则两环绕天体相距最远.
假设有一载人宇宙飞船在距地面高度为4 200 km的赤道上空绕地球做匀速圆
周运动,地球半径约为6 400 km,地球同步卫星距地面高为36 000 km,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时,宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为( )
A.4次 C.7次
B.6次 D.8次
解析:选C 根据圆周运动的规律,分析一昼夜同步卫星与宇宙飞船相距最近的次数,即为卫星发射信号的次数,也为接收站接收到的信号次数.
GMm4π2
设宇宙飞船的周期为T,由2=m2r,得T=2π
rT解得T=3 h
设两者由相距最远至第一次相距最近的时间为t1,有 (2π
2π12
-)·t1=π,解得t1= h TT07
r3T26 400+4 2003
,则2=(),GM246 400+36 000
再设两者相邻两次相距最近的时间间隔为t2,有 (2π
2π24
-)·t2=2π,解得t2= h TT07
24-t1由n==6.5次知,接收站接收信号的次数为7次.
t2
如图所示,质量相同的三颗卫星a 、b、c绕地球做匀速圆周运动,其中b、c在地球的同步轨道上,a距离地球表面的高度为R,此时a、b恰好相距最近.已知地球质量为M、半径为R、地球自转的角速度为ω,引力常量为G,则下列选项正确的是( )
A.发射卫星a时速度要大于7.9 km/s
B.若要卫星c与b实现对接,让卫星c加速即可
K12学习教育资源
K12学习教育资源
3GMC.卫星b距离地面的高度为 2 ω
D.卫星a和b下一次相距最近还需经过的时间t=
2π
GM2-ω8R
解析:选A 地球卫星的最小发射速度为7.9 km/s,可知发射卫星a的速度大于7.9 km/s,故A正确.让卫星c加速,万有引力小于向心力,卫星c会脱离圆轨道,做离心运动,不会与卫星b实现对接,故B错误.根据GMmR+h2
=m(R+h)ω得,卫星b离地的高度h2
3GMGMm2
= 故C错误.当( ωa-ω)t=2π时,再一次相距最近,根据2-R,2=m·2R·ωaωR得,运动的时间t=
2π
GM2-ω8R,故D错误.
3.(多选)A、B两卫星在相同的轨道平面内运动,地球的半径为R,A、B两卫星的轨道高度分别为R和3R,某时刻两卫星距离最近,下列说法正确的是( )
A.A、B两卫星的周期之比为3∶9 B.A、B两卫星的线速度之比为2∶1 4+2
C.A卫星可能再运动圈两卫星距离最远
74-2
D.A卫星可能再运动圈两卫星距离最远
7
r3TA解析:选BCD 两卫星的轨道半径分别为rA=2R,rB=4R,由2=k得,=2∶4,A
TTBGMmmv2
选项错误;由2=得,v=rrGM,故vA∶vB=2∶1,B选项正确;设再经过t=nTA两rtt4+2
卫星距离最近,若两卫星同向运动,有-=1,解得n=,C选项正确;若两卫星
TATB7
2πt2πt4-2
反向运动,有ωAt+ωBt=π,+=π,解得n=,D选项正确.
TATB7
4.万有引力定律是科学史上最伟大的定律之一,利用它我们可以进行许多分析和预测.2016年3月8日出现了“木星冲日”.当地球位于太阳和木星之间且三者几乎排成一条直线时,天文学家称之为“木星冲日”.木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.下列说法正确的是( )
K12学习教育资源