数率。在分析谱图时,首先必须考虑的是消除荷电位移。对于金属和半导体样品由于不会荷电,因此不用校准。但对于绝缘样品,则必须进行校准。因为,当荷电较大时,会导致结合能位置有较大的偏移,导致错误判断。使用计算机自动标峰时,同样会产生这种情况。一般来说,只要该元素存在,其所有的强峰都应存在,否则应考虑是否为其他元素的干扰峰。激发出来的光电子依据激发轨道的名称进行标记。如从C原子的1s轨道激发出来的光电子用C 1s标记。由于X射线激发源的光子能量较高,可以同时激发出多个原子轨道的光电子,因此在XPS谱图上会出现多组谱峰。大部分元素都可以激发出多组光电子峰,可以利用这些峰排除能量相近峰的干扰,以利于元素的定性标定。由于相近原子序数的元素激发出的光电子的结合能有较大的差异,因此相邻元素间的干扰作用很小。
由于光电子激发过程的复杂性,在XPS谱图上不仅存在各原子轨道的光电子峰,同时还存在部分轨道的自旋裂分峰,K?2产生的卫星峰,携上峰以及X射线激发的俄歇峰等伴峰,在定性分析时必须予以注意。现在,定性标记的工作可由计算机进行,但经常会发生标记错误,应加以注意。对于不导电样品,由于荷电效应,经常会使结合能发生变化,导致定性分析得出不正确的结果。
O 1sTi(CN)X/Al 薄膜计数/ 任意单位Ti 2pN 1sC 1sAl 2s300结合能/eV200100600500400Al 2p0
图18.2是高纯Al基片上沉积的Ti(CN)x薄膜的XPS谱图,激发源为Mg K?。
从上图可见,在薄膜表面主要有Ti, N, C, O和Al元素存在。Ti, N的信号较弱,而O的信号很强。这结果表明形成的薄膜主要是氧化物,氧的存在会影响Ti(CN)x薄膜的形成。
18.4.5.2 表面元素的半定量分析
首先应当明确的是XPS并不是一种很好的定量分析方法。它给出的仅是一种半定量的分析结果,即相对含量而不是绝对含量。由XPS提供的定量数据是以原子百分比含量表示的,而不是我们平常所使用的重量百分比。这种比例关系可以通过下列公式换算:
ciwt?ci?Ai?ci?1i?ni?Ai (18.2)
式中 ciwt - 第i种元素的质量分数浓度;
ci - 第i种元素的XPS摩尔分数; Ai - 第i种元素的相对原子质量。
Page 6
在定量分析中必须注意的是,XPS给出的相对含量也与谱仪的状况有关。因为不仅各元素的灵敏度因子是不同的,XPS谱仪对不同能量的光电子的传输效率也是不同的,并随谱仪受污染程度而改变。XPS仅提供表面3~5 nm厚的表面信息,其组成不能反映体相成分。样品表面的C, O污染以及吸附物的存在也会大大影响其定量分析的可靠性。
18.4.5.3表面元素的化学价态分析
表面元素化学价态分析是XPS的最重要的一种分析功能,也是XPS谱图解析最难,比较容易发生错误的部分。在进行元素化学价态分析前,首先必须对结合能进行正确的校准。因为结合能随化学环境的变化较小,而当荷电校准误差较大时,很容易标错元素的化学价态。此外,有一些化合物的标准数据依据不同的作者和仪器状态存在很大的差异,在这种情况下这些标准数据仅能作为参考,最好是自己制备标准样,这样才能获得正确的结果。有一些化合物的元素不存在标准数据,要判断其价态,必须用自制的标样进行对比。还有一些元素的化学位移很小,用XPS的结合能不能有效地进行化学价态分析,在这种情况下,可以从线形及伴峰结构进行分析,同样也可以获得化学价态的信息。
金属碳化物280.8 eV有机碳285.0 eV计数 / 任意单位60 min40 min20 minSurface288286284282 结合能 / eV280278图18.3是PZT薄膜中碳的化学价态谱
从图上可见,在PZT薄膜表面,C 1s的结合能为285.0 eV和281.5eV,分别对应于有机碳和金属碳化物。有机碳是主要成分,可能是由表面污染所产生的。随着溅射深度的增加,有机碳的信号减弱,而金属碳化物的峰增强。这结果说明在PZT薄膜内部的碳主要以金属碳化物存在。
18.4.5.4 元素沿深度方向的分布分析
XPS可以通过多种方法实现元素沿深度方向分布的分析,这里介绍最常用的两种方法,它们分别是Ar离子剥离深度分析和变角XPS深度分析。
Page 7
(1)Ar离子束溅射法
Ar离子剥离深度分析方法是一种使用最广泛的深度剖析的方法,是一种破坏性分析方法,会引起样品表面晶格的损伤,择优溅射和表面原子混合等现象。其优点是可以分析表面层较厚的体系,深度分析的速度较快。其分析原理是先把表面一定厚度的元素溅射掉,然后再用XPS分析剥离后的表面元素含量,这样就可以获得元素沿样品深度方向的分布。由于普通的X光枪的束斑面积较大,离子束的束班面积也相应较大,因此,其剥离速度很慢,深度分辨率也不是很好,其深度分析功能一般很少使用。此外,由于离子束剥离作用时间较长,样品元素的离子束溅射还原会相当严重。为了避免离子束的溅射坑效应,离子束的面积应比X光枪束斑面积大4倍以上。对于新一代的XPS谱仪,由于采用了小束斑X光源(微米量级),XPS深度分析变得较为现实和常用。
(2)变角XPS深度分析
变角XPS深度分析是一种非破坏性的深度分析技术,但只能适用于表面层非常薄(1~5nm)的体系。 其原理是利用XPS的采样深度与样品表面出射的光电子的接收角的正玄关系,可以获得元素浓度与深度的关系。图18.4是XPS变角分析的示意图。图中,?为掠射角,定义为进入分析器方向的电子与样品表面间的夹角。取样深度(d)与掠射角(?)的关系如下:d = 3?sin(?). 当?为90?时,XPS的采样深度最深,减小?可以获得更多的表面层信息,当?为5?时,可以使表面灵敏度提高10倍。在运用变角深度分析技术时, 必须注意下面因素的影响。(1)单晶表面的点陈衍射效应;(2)表面粗糙度的影响;(2)表面层厚度应小于10 nm.
图18.5 是Si3N4样品表面SiO2污染层的变角XPS分析。从图上可见,在掠射角为5?时,XPS的采样深度较浅,主要收集的是最表面的成分。由此可见,在Si3N4样品表面的硅主要以SiO2物种存在。在掠射角为90?时,XPS的采样深度较深,主要收集的是次表面的成分。此时,Si3N4的峰较强,是样品的主要成分。从XPS变角分析的结果可以认为表面的Si3N4样品已被自然氧化成SiO2物种。
Page 8
图18.4变角XPS示意图
图18.5 Si3N4表面SiO2污染层的变角XPS谱
18.4.5. 5 XPS伴峰分析技术
在XPS谱中最常见的伴峰包括携上峰,X射线激发俄歇峰(XAES)以及XPS价带峰。这些伴峰一般不太常用,但在不少体系中可以用来鉴定化学价态,研究成键形式和电子结构,是XPS常规分析的一种重要补充。
(1) XPS的携上峰分析
在光电离后,由于内层电子的发射引起价电子从已占有轨道向较高的未占轨道的跃迁,这个跃迁过程就被称为携上过程。在XPS主峰的高结合能端出现的能量损失峰即为携上峰。携上峰是一种比较普遍的现象,特别是对于共轭体系会产生较多的携上峰。在有机体系中,携上峰一般由?-?*跃迁所产生,也即由价电子从最高占有轨道(HOMO)向最低未占轨道(LUMO)的跃迁所产生。某些过渡金属和稀土金属,由于在3d轨道或4f轨道中有未成对电子,也常常表现出很强的携上效应。
Page 9
284.75x 10计数 / 任意单位C 60碳纳米管 284.6x 5石墨x 5294292
图18.6是几种碳纳米材料的C 1s峰和携上峰谱图
图18.6是几种碳材料的C 1s谱。从图上可见,C 1s的结合能在不同的碳物种中有一定的差别。在石墨和碳纳米管材料中,其结合能均为284.6 eV;而在C60材料中,其结合能为284.75 eV。由于C 1s峰的结合能变化很小,难以从C 1s峰的结合能来鉴别这些纳米碳材料。但图上可见,其携上峰的结构有很大的差别,因此也可以从C 1s的携上伴峰的特征结构进行物种鉴别。在石墨中,由于C原子以sp2杂化存在,并在平面方向形成共轭?键。这些共轭?键的存在可以在C 1s峰的高能端产生携上伴峰。这个峰是石墨的共轭?键的指纹特征峰,可以用来鉴别石墨碳。从图上还可见,碳纳米管材料的携上峰基本和石墨的一致,这说明碳纳米管材料具有与石墨相近的电子结构,这与碳纳米管的研究结果是一致的。在碳纳米管中,碳原子主要以sp2杂化并形成圆柱形层状结构[3]。C60材料的携上峰的结构与石墨和碳纳米管材料的有很大的区别,可分解为5个峰,这些峰是由C60的分子结构决定的。在C60分子中,不仅存在共轭?键,并还存在?键。因此,在携上峰中还包含了?键的信息。综上所见,我们不仅可以用C 1s的结合能表征碳的存在状态,也可以用它的携上指纹峰研究其化学状态。
(2)X射线激发俄歇电子能谱(XAES)分析
在X射线电离后的激发态离子是不稳定的,可以通过多种途径产生退激发。其中一种最常见的退激发过程就是产生俄歇电子跃迁的过程,因此X射线激发俄歇谱是光电子谱的必然伴峰。其原理与电子束激发的俄歇谱相同,仅是激发源不同。与电子束激发俄歇谱相比,XAES具有能量分辨率高,信背比高,样品破坏性小及定量精度高等优点。同XPS一样,XAES的俄歇动能也与元素所处的化学环境有密切关系。同样可以通过俄歇化学位移来研究其化学价态。由于俄歇过程涉及到三电子过程,其化学位移往往比XPS的要大得多。这对于元素的化学状态鉴别非常有效。对于有些元素,XPS的化学位移非常小,不能用来研究化学状态的变化。不仅可以用俄歇化学位移来研究元素的化学状态,其线形也可以用来进行化学状态的鉴别。
290288286结合能 / eV284282 Page 10