好文档 - 专业文书写作范文服务资料分享网站

小学数学典型应用题(30类)汇编大全

天下 分享 时间: 加入收藏 我要投稿 点赞

前,分针在后,两针相距20格。所以分针追上时针的时间为 20÷(1-1/12)≈ 22(分)

答:再经过22分钟时针正好与分针重合。

例2 四点和五点之间,时针和分针在什么时候成直角?

解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。

(5×4-15)÷(1-1/12)≈ 6(分) (5×4+15)÷(1-1/12)≈ 38(分) 答:4点06分及4点38分时两针成直角。 例3 六点与七点之间什么时候时针与分针重合?

解 六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。(5×6)÷(1-1/12)≈ 33(分)

答:6点33分的时候分针与时针重合。

14 盈亏问题

【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。 【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差 如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差 参加分配总人数=(大亏-小亏)÷分配差

【解题思路和方法】 大多数情况可以直接利用数量关系的公式。

例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?

解 按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系: (1)有小朋友多少人? (11+1)÷(4-3)=12(人) (2)有多少个苹果? 3×12+11=47(个) 答:有小朋友12人,有47个苹果。

例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?

解 题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=(大亏-小亏)÷分配差”的数量关系,可以得知

原定完成任务的天数为(260×8-300×4)÷(300-260)=22(天) 这条路全长为300×(22+4)=7800(米) 答:这条路全长7800米。

例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?

解 本题中的车辆数就相当于“参加分配的总人数”,于是就有 (1)有多少车? (30-0)÷(45-40)=6(辆) (2)有多少人? 40×6+30=270(人) 答:有6 辆车,有270人。

15 工程问题

【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。 【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。 工作量=工作效率×工作时间 工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率) 【解题思路和方法】 变通后可以利用上述数量关系的公式。

例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天)

答:两队合做需要6天完成。

例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

(1)每小时甲比乙多做多少零件?24÷[1÷(1/6+1/8)]=7(个) (2)这批零件共有多少个?7÷(1/6-1/8)=168(个) 答:这批零件共有168个。

解二 上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7

所以,这批零件共有 24÷1/7=168(个)

例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解 必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是 60÷12=5 60÷10=6 60÷15=4

因此余下的工作量由乙丙合做还需要(60-5×2)÷(6+4)=5(小时) 答:还需要5小时才能完成。

例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为

此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4

×5),2个进水管15小时注水量为(1×2×15),从而可知每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

即一个排水管与每个进水管的工作效率相同。由此可知一池水的总工作量为 1×4

×5-1×5=15又因为在2小时内,每个进水管的注水量为1×2,所以,2小时内注满一池水至少需要多少个进水管? (15+1×2)÷(1×2)=8.5≈9(个)

答:至少需要9个进水管。

16 正反比例问题

【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应

的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。 正反比例问题与前面讲过的倍比问题基本类似。

例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

解 由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12 现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公

路总长为300÷(4-3)×12=3600(米)

答: 这条公路总长3600米。

例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

解 做题效率一定,做题数量与做题时间成正比例关系

设91分钟可以做X应用题 则有 28∶4=91∶X 28X=91×4 X=91×4÷28 X=13 答:91分钟可以做13道应用题。

例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

解 书的页数一定,每天看的页数与需要的天数成反比例关系 设X天可以看完,就有 24∶36=X∶15 36X=24×15 X=10 答:10天就可以看完。

例4 一个大矩形被分成六个小矩形,其中四个小矩形的面积如图所示,求大矩形的面积。 A 22 5 0 36 B 16 解 由面积÷宽=长可知,当长一定时,面积与宽成正比,所以每一上下两个小矩形面积之比就等于它们的宽的正比。又因为第一行三个小矩形的宽相等,第二行三个小矩形的宽也相

等。因此,A∶36=20∶16 25∶B=20∶16 解这两个比例,得 A=45 B=20所以,大矩形面积为 45+36+25+20+20+16=162

答:大矩形的面积是162

17 按比例分配问题

【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。 总份数=比的前后项之和

【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

解 总份数为 47+48+45=140 一班植树 560×47/140=188(棵) 二班植树 560×48/140=192(棵) 三班植树 560×45/140=180(棵)

答:一、二、三班分别植树188棵、192棵、180棵。

例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?

解 3+4+5=12 60×3/12=15(厘米) 60×4/12=20(厘米) 60×5/12=25(厘米)

答:三角形三条边的长分别是15厘米、20厘米、25厘米。

例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

1/2∶1/3∶1/9=9∶6∶2 9+6+2=17 17×9/17=9 17×6/17=6 17×2/17=2

答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人? 人 数 对应的份数 80人 12-8 一共多少人? 8+12+21 解 80÷(12-8)×(8+12+21)=820(人) 答:三个车间一共820人。

18 百分数问题

【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。

小学数学典型应用题(30类)汇编大全

前,分针在后,两针相距20格。所以分针追上时针的时间为20÷(1-1/12)≈22(分)答:再经过22分钟时针正好与分针重合。例2四点和五点之间,时针和分针在什么时候成直角?解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4
推荐度:
点击下载文档文档为doc格式
04d3h19yru8wrp7230mk0mq5e7eayt017v1
领取福利

微信扫码领取福利

微信扫码分享