[标签:标题]
篇一:小学数学速算与巧算方法例解 小学数学速算与巧算方法例解【转】
2011-04-17 21:04:55| 分类: 教海拾贝|举报|字号 订阅 速算与巧算
在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136
这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111
这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121
这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19
=60+(2+18)+(1+19) =60+20+20=100
这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28
=(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84
这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18
=45+(19-18)=45+1=46
这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19) =45-1=44
这样想:加18减19的结果就等于减1. 三、计算等差连续数的和
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15
4,8,12,16,20等等都是等差连续数.
1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成: (1)计算:1+2+3+4+5+6+7+8+9 =5×9 中间数是5 =45 共9个数
(2)计算:1+3+5+7+9 =5×5 中间数是5 =25 共有5个数
(3)计算:2+4+6+8+10 =6×5 中间数是6 =30 共有5个数
(4)计算:3+6+9+12+15 =9×5 中间数是9 =45 共有5个数
(5)计算:4+8+12+16+20 =12×5 中间数是12 =60 共有5个数
2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算:
1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55
共10个数,个数的一半是5,首数是1,末数是10. (2)计算:
3+5+7+9+11+13+15+17 =(3+17)×4=20×4=80
共8个数,个数的一半是4,首数是3,末数是17. (3)计算:
2+4+6+8+10+12+14+16+18+20 =(2+20)×5=110
共10个数,个数的一半是5,首数是2,末数是20. 四、基准数法
(1)计算:23+20+19+22+18+21
解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把
少算的加上,把多算的减去. 23+20+19+22+18+21 =20×6+3+0-1+2-2+1 =120+3=123
6个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推. (2)计算:102+100+99+101+98
解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.
102+100+99+101+98 =100×5+2+0-1+1-2=500
方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家) 102+100+99+101+98 =98+99+100+101+102 =100×5=500
可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 加法中的巧算 1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万?,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。
又如:11+89=100,33+67=100, 篇二:常用的巧算和速算方法(1) 常用的巧算和速算方法
【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。
例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为 1 + 2 + ?? + 99 + 100
所以,1+2+3+4+??+99+100 =101×100÷2 =5050。
“3+5+7+???+97+99=?
3+5+7+??+97+99=(99+3)×49÷2= 2499。
这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:
“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?” 题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。问她一共织了多少布?
张丘建在《算经》上给出的解法是:
“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。 这一解法,用现代的算式表达,就是 1 匹=4 丈,1 丈=10 尺, 90 尺=9 丈=2 匹1 丈。(答略)
张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起
来,算式就是 5+????+1
在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是 1+??????+5
此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。
假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等” 这一特点,那么,就会出现下面的式子: 所以,加得的结果是6×30=180(尺)
但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。所以,这妇女30 天织的布是
180÷2=90(尺)
可见,这种解法的确是简单、巧妙和饶有趣味的。
【分组计算】一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。 例如:
求1 到10 亿这10 亿个自然数的数字之和。 这道题是求“10 亿个自然数的数字之和”,而不是“10 亿个自然数之和”。 什么是“数字之和”?例如,求1 到12 这12 个自然数的数字之和,算式是 1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。
显然,10 亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10 亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组: 0 和999,999,999;1 和999,999,998; 2 和999,999,997;3 和999,999,996; 4 和999,999,995;5 和999,999, 994; ??? ??? 依次类推,可知除最后一个数,1,000,000,000 以外,其他的自然数与添上的0 共10 亿个数,共可以分为5 亿组,各组数字之和都是81,如 0+9+9+9+9+9+9+9+9+9=81 1+9+9+9+9+9+9+9+9+8=81 ??????
最后的一个数1,000,000,000 不成对,它的数字之和是1。所以,此题的计算结果是 (81×500,000,000)+1 =40,500,000,000+1 =40,500,000,001 【由小推大】“由小推大”是一种数学思维方法,也是一种速算、巧算技巧。
遇到有些题数目多,关系复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。例如: (1)计算下面方阵中所有的数的和。
这是个“100×100”的大方阵,数目很多,关系较为复杂。不妨先化大为小,再由小推大。先观察“5×5”的方阵,如下图(图4.1)所示。
容易看到,对角线上五个“5”之和为25。
这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2 那样拼接,那么将会发现,这五个斜行,每行数之和都是25。所以,“5×5”方阵的所有数之和为25×5=125,即53=125。
于是,很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。 (2)把自然数中的偶数,像图4.3 那样排成五列。最左边的叫第一列,按从左到右的顺序,其他叫第二、第三??第五列。那么2002 出现在哪一列: 因为从2 到2002,共有偶数2002÷2=1001(个)。从前到后,是每8 个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按由小到大的顺序)。所以,由1001÷8=125????1,可知这1001 个偶数可以分为125 组,还余1 个。故2002 应排在第二列。
【凑整巧算】用“凑整方法”巧算,常常能使计算变得比较简便、快速。例如 (1)99.9+11.1=(90+10)+(9+1)+(0.9+0.1)=111 (2)9+97+998+6=(9+1)+(97+3)+(998+2) =10+100+1000 =1110
(3)125+125+125+125+120+125+125+125 =155+125+125+125+(120+5)+125+125+125-5 =125×8-5 =1000-5 =995
【巧妙试商】除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。 (1)用“商五法”试商。
当除数(两位数)的10 倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如70÷14=5,125÷25=5。
当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位 不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。例如1248÷24=52,2385÷45=53 (2)同头无除商八、九。
“同头”指被除数和除数最高位上的数字相同。“无除”仍指被除数前两位不够除。这时,商定在被除数高位数起的第三位上面,再直接商8 或商9。 5742÷58=99,4176÷48=87。 (3)用“商九法”试商。
当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10 倍时,可以一次定商为“9”。
一般地说,假如被除数为m,除数为n,只有当9n≤m<10n 时,n 除m 的商才是9。同样地,10n≤m+n<11n。这就是我们上述做法的根据。 例如4508÷49=92,6480÷72=90。 (4)用差数试商。
当除数是11、12、13????18 和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。若差数是1 或2,则初商为9;差数是3 或4,则初商为8;差数是5 或6,则初商为7;差数是7 或8,则初商是6;差数是9 时,则初商为5。若不准确,只要调小1 就行了。 例如