2.小振幅重力波剖面方程中各符号的含义是什么?
小振幅重力波,亦称正弦波,是一种简单波动。简单波动的特性可近似地说明实际海洋波动的许多现象。小振幅重力波系指波动振幅相对波长为无限小,重力是其唯一外力的简单海面波动。 取右手直角坐标系,z轴向上为正,将x—y平面放在海面上,设波动是二维的,只在x方向上传播,则波剖面方程可用下列正弦曲线表示,即: ζ=αsin(kx-σt) (6-1)
式中α为波动的振幅,ζ为波面相对平均水面的铅直位移。显然它是地点x与时间t的函数,式中
分别称为波数和频率。当水深为h时,可证明它们的关系为:
σ2=kgtanh(kh)=kgtanh(2πh/λ)① (6-2) 称为频散关系。式中g为重力加速度。
由式(6-1)可见,当(kx-σt)=π/2时,ζ=a,即为波峰。相速为8.风浪和涌浪是怎样形成的?各有什么特征?
风浪是指当地风产生,且一直处在风的作用之下的海面波动状态;
亦即
涌浪则指海面上由其他海区传来的或者当地风力迅速减小、平息,或者风向改变后海面上遗留下来的波动。
风浪的特征:风浪往往波峰尖削,在海面上的分布很不规律,波峰线短,周期小,当风大时常常出现破碎现象,形成浪花。
涌浪的特征:涌浪的波面比较平坦,光滑,波峰线长,周期、波长都比较大,在海上的传播比较规则。
观测表明,在海洋中风浪和涌浪会单独存在,但往往同时存在,它们的传播方向也往往不同。有经验的观测者很容易把它们区分开来。
第七章 潮 汐
1.什么叫潮汐现象?
潮汐现象是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,习惯上把海面铅直向涨落称为潮汐,而海水在水平方向的流动称为潮流。 3.什么叫平太阳日和平太阴日?
平太阳日和平太阳时:天文学上假定一个平太阳在天赤道上(而不是在黄道上)作等速运行,其速度等于运行在黄道上真太阳的平均速度,这个假想的太阳连续两次上中天的时间间隔,叫做一平太阳
日,并且把1/24平太阳日取为1平太阳时。通常所谓的“日”和“时”,就是平太阳日和平太阳时的简称。
平太阴日和平太阴时:假想的、等速在天赤道运行的平太阴连续两次上中天的时间间隔,叫做一平太阴日,而1/24平太阴日取为1平太阴时。
因为月球的公转速度大于太阳在天球上的视运动速度,当地球自转一周,平太阴已运行了一个大约12.19°的角度,所以当地球上某一点由第一次正对月球中心到第二次正对时约需要旋转372.19°,这样以来,平太阴日便比平太阳日长,可以算出: 1平太阴日=24.8412平太阳时≈24h50min
4.什么叫做引潮力?引潮力的分布有什么特征?(第二问答案看课本)
引潮力:地球绕地月公共质心运动所产生的惯性离心力与月球引力的合力称为引潮力。 地球上各点的引潮力矢量所示,可见地球表面各点所受的引潮力的大小、方向都不同, 5.试述潮汐静力理论的基本思想。
由于考虑引潮力后的等势面为一椭球面,根据这一分布特点,可以导出一个研究海水在引潮力作用下产生潮汐过程的理论,即潮汐静力理论(或称平衡潮理论)。 潮汐静力理论基本思想:这一理论假定:
(1)地球为一个圆球,其表面完全被等深的海水所覆盖,不考虑陆地的存在; (2)海水没有粘滞性,也没有惯性,海面能随时与等势面重叠; (3)海水不受地转偏向力和摩擦力的作用。
在这些假定下,海面在月球引潮力的作用下离开原来的平衡位置作相应的上升或下降,直到在重力和引潮力的共同作用下,达到新的平衡位置为止。因此海面便产生形变,也就是说,考虑引潮力后的海面变成了椭球形,称之为潮汐椭球,并且它的长轴恒指向月球。由于地球的自转,地球的表面相对于椭球形的海面运动,这就造成了地球表面上的固定点发生周期性的涨落而形成潮汐,这就是平衡潮理论的基本思想。
第八章 大气与海洋
8.什么是台风?它的基本结构如何?
一、一般说明
台风是发生在热带海洋上的一种具有暖心结构的气旋性涡旋,是达到一定强度的热带气旋。台风伴有狂风暴雨,是一种灾害性天气系统。世界各地对台风的称谓不同,在东太平洋和大西洋称飓风,在印度洋称热带风暴,在南半球称热带气旋。台风的生命期一般为3~8天,台风直径一般为600~1000km,最大的可达2000km,最小的只有100km。在北半球,台风集中发生在7~10月,尤以8、9月最多。据统计,每年5~11月台风可能影响或登陆中国。
全球每年平均大约有80个热带气旋发生,其中半数以上可以发展成台风,台风集中发生在西北太平洋、孟加拉湾、东北太平洋、西北大西洋、阿拉伯海、南印度洋、西南太平洋和澳大利亚西北海域等8个地区。西太平洋是全球热带气旋发生最多的地区,约占全球总数的三分之一。热带气旋的多发地带集中在5°~10°纬度带内,而南北半球纬度5°以内几乎没有热带气旋发生。
二、台风的结构
台风是一种天气尺度、暖中心的强气旋性涡旋,在北半球呈逆时针旋转,在南半球呈顺时针旋转。发展成熟的台风其要素值多呈圆形对称分布,台风涡旋半径一般为500~1000km,铅直范围一般到对流层顶。台风中心气压值(即风暴强度)一般在960hPa以下,在地面天气图上等压线表现为一个圆形(或椭圆形)对称的、气压梯度极大的闭合低气压系统,水平气压梯度能达5~10hPa/10km,台风过境时,测站气压自记曲线出现明显的漏斗状气压深谷,发展成熟的台风往往有台风眼,即在深厚云区的中间有一个直径为几十千米近似圆形的晴空少云区,眼区为微风或静风,气压最低,平均直径为30~40km。台风眼区外围的圆环状云区称为台风云墙或眼壁,云墙区主要是由一些高大对流云组成,其高度通常在15km以上,宽度为20~30km,在云墙区域有强烈的上升运动,其值可达5~13m/s,云墙附近是风雨最剧烈的地区,摧毁性的大风暴雨常常发生在这里。台风云墙到台风外缘是台风的螺旋云雨带,它也是台风的重要特征之一,是由一条或几条螺旋云带旋向台风中心眼壁的,云带区对流活动旺盛,有显著的上升运动。
台风表现为强烈的气旋性环流,低层有强烈的流入,高层有强烈的流出,并有极强烈的上升运动。地面是气旋式辐合流场,气流从四周以螺旋曲线的形式流向台风中心区。台风天气表现为大风、暴雨、狂浪和风暴潮。
9.什么是ENSO?它对气候变化有什么影响? ENSO是厄尔尼诺现象和南方涛动的合称。
众多研究表明,ENSO对大气环流以及全球许多地方的天气气候异常有着重要的影响。ENSO期间,赤道东太平洋持续升温,对热带大气环流的影响最为直接。而热带大气环流的异常变化,也必牵动全球大气环流,因而会在全球范围内引起一系列的天气气候异常。
在正常情况下,赤道大气中存在一个东西向的沃克(Walker)环流,这是叠加在纬向平均哈得莱环流上的重要东西向环流,在印度尼西亚群岛附近海面暖水上空,有一个强而宽的上升运动区,而在赤道东太平洋冷水区上空,则为强烈的下沉运动;在赤道东部非洲和亚马孙流域,还有另外两个上升运动区,与之相联的下沉运动则分别位于略微较冷的西印度洋和赤道东大西洋的冷水上空。 在ENSO期间,中、东赤道太平洋的海水增暖,西部海水略微变冷。对流在中、东太平洋上加强而在印度尼西亚地区减弱。在反ENSO期间,中、东太平洋的海水比正常偏冷,这些区域的对流也减弱,而印度尼西亚地区的对流增强。所谓的正常状态代表ENSO和反ENSO事件的平均,但却更象弱的反ENSO状态。
在厄尔尼诺现象发生的情况下,主要增暖区的西边,也就是在日界线附近及其西面地区将有异常积云对流的强烈发展。因此在厄尔尼诺期间主要降水区由印度尼西亚地区东移到了那里。同时,Walker环流也出现了明显的异常,其上升支由印度尼西亚地区东移到了日界线附近。
由于赤道东太平洋SST异常(厄尔尼诺现象),大气中的Hadley环流将会增强,或者说,厄尔尼诺现象会导致Hadley环流明显增强。如此同时,ITCZ的位置也将发生变化,例如厄尔尼诺期间ITCZ有明显向东推移的趋势,这必将影响西太平洋台风活动。
ENSO对西太平洋副热带高压的活动也有明显的影响,包括对副高位置和强度的影响。首先,同厄尔尼诺年ITCZ位置偏南相匹配,西太平洋副高的位置在厄尔尼诺年一般也偏南。而在拉尼娜年西太平洋副高脊线位置较常年偏北。
由于ENSO的发生造成了大气环流尤其是热带大气环流的严重持续异常,因而给全球范围带来明显的气候异常。首先可以注意到距SST正距平区较近的中南美太平洋沿岸地区,由于赤道地区东西向铅直环流圈的异常,原来在南美东岸的环流上升支西移到了南美西岸,因而积云对流活动在秘鲁沿岸地区极为强烈,造成哥伦比亚、厄瓜多尔和秘鲁等地的持续大雨。以1982—1983年的厄尔尼诺事件为例,在秘鲁北部的降水量竟多达多年平均量的340倍。巨大的降水量异常使河水流量猛增,造成该地区的严重洪涝。
同上述洪涝灾害相反,厄尔尼诺事件的发生又往往造成南亚、印度尼西亚和东南非洲的大范围干旱。在近百年的时间里,在绝大多数的厄尔尼诺年里,这三个地区的雨量都明显偏少。以印度地区为例,在80年里的24次厄尔尼诺现象中,就在20年该地区的降水量低于平均值,而且,最严重的干旱几乎都发生在厄尔尼诺年。
厄尔尼诺现象的发生使中高纬度西风加强,阿留申低压往往比正常时强(气压值低),因而常给北美西岸地区造成频繁的强风暴活动,使得暴风雨和风暴浪潮的影响较为严重。ENSO对中国气候也有明显的影响,众多的气候灾害说明ENSO影响大气环流从而导致全球性气候异常。 10.为什么海洋在全球气候变化中占重要地位? 海洋在气候系统中的地位
海洋在地球气候的形成和变化中的重要作用已越来越为人们所认识,它是地球气候系统的最重要的组成部分。80年代的研究结果清楚地表明,海洋-大气相互作用是气候变化问题的核心内容,对于几年到几十年时间尺度的气候变化及其预测,只有在充分了解大气和海洋的耦合作用及其动力学的基础上才能得到解决。海洋在气候系统中的重要地位是由海洋自身的性质所决定的。 地球表面约71%为海洋所覆盖,全球海洋吸收的太阳辐射量约占进入地球大气顶的总太阳辐射量的70%左右。因此,海洋,尤其是热带海洋,是大气运动的重要能源。
海洋有着极大的热容量,相对大气运动而言,海洋运动比较稳定,运动和变化比较缓慢。 海洋是地球大气系统中CO2的最大的汇。
上述三个重要性质,决定了海洋对大气运动和气候变化具有不可忽视的影响。