ÔòP?Q
3£®Ç뽫Óï¾ä¡°ËûÈ¥ÂÃÓΣ¬½öµ±ËûÓÐʱ¼ä¡±·Òë³ÉÃüÌ⹫ʽ£® ÉèP£ºËûÈ¥ÂÃÓΡ£ Q£ºËûÓÐʱ¼ä¡£ ÔòP?Q
4£®Ç뽫Óï¾ä¡°41´ÎÁгµÏÂÎçÎåµã¿ª»òÁùµã¿ª£®¡±·Òë³ÉÃüÌ⹫ʽ£® ÉèP£º41´ÎÁгµÏÂÎçÎåµã¡£ Q£º41´ÎÁгµÏÂÎçÁùµã¿ª¡£ ÔòP»òQ
5£®Ç뽫Óï¾ä¡°ÓÐÈ˲»È¥¹¤×÷¡±·Òë³Éν´Ê¹«Ê½£® Éè A£¨x£©£ºxÊÇÈË
B£¨x£©£ºÈ¥¹¤×÷ ?x(A(x)??B(x))
6£®Ç뽫Óï¾ä¡°ËùÓÐÈ˶¼Å¬Á¦¹¤×÷£®¡±·Òë³Éν´Ê¹«Ê½£® Éè A£¨x£©£ºxÊÇÈË B£¨x£©£ºÅ¬Á¦¹¤×÷ ?x(A(x)?B(x))
ËÄ¡¢ÅжÏ˵Ã÷Ì⣨ÅжÏÏÂÁи÷Ì⣬²¢ËµÃ÷ÀíÓÉ£®£©
1£®ÃüÌ⹫ʽ?P?PµÄÕæÖµÊÇ1¡£
´ð£º´íÎó¡£ÒòΪPºÍPµÄ·ñ²»ÄÜͬʱΪÕæ¡£
2£®ÃüÌ⹫ʽÖеÄÔ¼Êø±äԪΪy¡£ £¨?x£©P(x)?Q(y)?R(z)£©
´ð£º´íÎ󡣸ÃʽÖеÄÔ¼ÊøԪΪx¡£
3£®Î½´Ê¹«Ê½£¨?x£©P(x£¬y)?(?z)Q(x,y,z)ÖÐ?xÁ¿´ÊµÄϽÓòΪ P(x,y)?(?z)Q(x,y,z)¡£ ´ð£º´íÎó¡£Î½´Ê¹«Ê½ £¨?x£©P(x£¬y)?(?z)Q(x,y,z)ÖÐ?xÁ¿´ÊµÄϽÓòΪP(x,y)¡£Èôν´Ê¹«Ê½£¨?x£©P(x£¬y)?(?z)Q(x,y,z)±äΪ£¨?x£©P(x£¬y)?(?z)Q(x,y,z)£©£¬?xÁ¿´ÊµÄϽÓòΪP(x,y)?(?z)Q(x,y,z)¡£
4£®ÏÂÃæµÄÍÆÀíÊÇ·ñÕýÈ·£¬Çë¸øÓè˵Ã÷£®
(1) (?x)A(x)? B(x) Ç°ÌáÒýÈë (2) A(y) ?B(y) US (1)
´ð£º´íÎó¡£
ÒòΪB(x)²»ÊÜÈ«³ÆÁ¿´Ê?xµÄÔ¼Êø£¬²»ÄÜʹÓÃÈ«³ÆÖ¸¶¨¹æÔò¡£
£¨2£©Ó¦ÎªA(y) ?B(x)£¬»»Ãûʱ£¬Ô¼ÊøÔªÓë×ÔÓɱäÔª²»ÄÜ»ìÏý¡£ ËÄ£®¼ÆËãÌâ
1£®ÇóP?Q?RµÄÎöÈ¡·¶Ê½£¬ºÏÈ¡·¶Ê½¡¢Ö÷ÎöÈ¡·¶Ê½£¬Ö÷ºÏÈ¡·¶Ê½£® P?Q?R??P?Q?R£¨ÎöÈ¡·¶Ê½£© ?£¨?P?Q?R£©£¨ºÏÈ¡·¶Ê½£© ÕæÖµ±í£º P 0 0 0 0 1 1 1 1 Q 0 0 1 1 0 0 1 1 R 0 1 0 1 0 1 0 1 ?P 1 1 1 1 0 0 0 0 Ôʽ 1 1 1 1 0 1 1 1 ¼«Ð¡Ïî ¼«´óÏî ?P??P??P ?P??Q?R ?P?Q??R ?P?Q?R P??Q?R P?Q??R P?Q?R ?P?Q?R
Ö÷ÎöÈ¡·¶Ê½£¨?P??P??P£©?£¨?P??Q?R£©?£¨?P?Q??R£©?£¨?P?Q?R£©?£¨P??Q?R£©?£¨P?Q??R£©?£¨P?Q?R£© Ö÷ºÏÈ¡·¶Ê½£¨?P?Q?R£©
2£®ÇóÃüÌ⹫ʽ(P?Q)?(R?Q)µÄÖ÷ÎöÈ¡·¶Ê½¡¢Ö÷ºÏÈ¡·¶Ê½£® ÕæÖµ±í£º P 0 0 0 0 1 1 1 1 Q 0 0 1 1 0 0 1 1 R 0 1 0 1 0 1 0 1 ?£¨P?Q£© R?Q 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 Ôʽ 1 1 1 1 0 1 1 1 ¼«Ð¡Ïî ¼«´óÏî ?P??P??P ?P??Q?R ?P?Q??R ?P?Q?R P??Q?R P?Q??R P?Q?R ?P?Q?R
Ö÷ÎöÈ¡·¶Ê½£¨?P??P??P£©?£¨?P??Q?R£©?£¨?P?Q??R£©?£¨?P?Q?R£©?£¨P??Q?R£©?£¨P?Q??R£©?£¨P?Q?R£© Ö÷ºÏÈ¡·¶Ê½£¨?P?Q?R£©
3£®Éèν´Ê¹«Ê½(?x)(P(x,y)?(?z)Q(y,x,z))?(?y)R(y,z)£® £¨1£©ÊÔд³öÁ¿´ÊµÄϽÓò£»
£¨2£©Ö¸³ö¸Ã¹«Ê½µÄ×ÔÓɱäÔªºÍÔ¼Êø±äÔª£® ´ð£º£¨1£©?xµÄϽÓòΪP£¨x,y£©??zQ(x,y,z)
?zµÄϽÓòΪQ(x,y,z) ?yµÄϽÓòΪR(y,z) (2) Ô¼Êø±äԪΪ
P£¨x,y£©??zQ(x,y,z)ÖеÄx
Q(x,y,z) ÖÐµÄ z R(y,z)ÖеÄy ×ÔÓɱäԪΪ
P£¨x,y£©??zQ(x,y,z)ÖеÄy
R(y,z)ÖеÄz
4£®Éè¸öÌåÓòΪD={a1, a2}£¬Çóν´Ê¹«Ê½?y?xP(x,y)ÏûÈ¥Á¿´ÊºóµÄµÈֵʽ£»
´ð£ºÎ½´Ê¹«Ê½?y?xP(x,y)ÏûÈ¥Á¿´ÊºóµÄµÈֵʽΪ
=?xP£¨x,a1£©??xP£¨x,a2£©
=P (a1, a2£©?P (a1, a2£©?(P(a1, a2£©?P (a1, a2))
Îå¡¢Ö¤Ã÷Ìâ
1£®ÊÔÖ¤Ã÷ (P?(Q??R))??P?QÓë? (P??Q)µÈ¼Û£® Ö¤Ã÷£º(P?(Q??R))??P?Q
??P?(Q??R))??P?Q ??P?Q
??£¨P??Q£©
2£®ÊÔÖ¤Ã÷?(A??B)?(?B?C)??C??A
Ö¤Ã÷£º?(A??B)?(?B?C)??C ?(?A?B)?(?B?C)??C
?(?A?B)?(?B??C)?(C??C) ?(?A?B)?((?B??C)???0) ?(?A?B)?(?B??C)
?(?A? (?B??C))?(B?(?B??C)) ?(?A? (?B??C))?0 ??A? (?B??C) ??(A?B?C)
¹ÊÓÉ×ó±ß²»¿ÉÍƳöÓÒ±ß?A