人工智能算法在图像处理中的应用
人工智能算法在图像处理中的应用 人工智能算法包括遗传算法、蚁群算法、模拟退火算法和粒子群算法等,在图像边缘检测、图像分割、图像识别、图像匹配、图像分类等领域有广泛应用。本文首先介绍常用人工智能算法的的原理和特点,然后将其在图像处理方面的应用进行综述,最后对应用前景做出展望。 【关键词】人工智能算法 图像处理 人工智能算法是人类受自然界各种事物规律(如人脑神经元、蚂蚁觅食等)的启发,模仿其工作原理求解某些问题的算法。随着计算机技术的发展,人工智能算法在图像处理方面得到广泛应用。当前流行的人工智能算法包括人工神经网络、遗传算法、蚁群算法、模拟退火算法、粒子群算法等。 1 人工神经网络 人工神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法数学模型,通过调整内部大量节点之间相互连接的关系,达到处理信息的目的,具有自组织、自学习、自推理和自适应等优点。 神经网络可用于图像压缩,将图像输入层和输出层设置较多节点,中间传输层设置较少节点,学习后的网络可以较少的节点表示图像,用于存储和传输环节,节约了存储空间,提高的传输效率,最后在输出层将图像还原。学者Blanz和Gish提出一个三层的前馈神经网络图像分割模型,Babaguchi提出多层BP网络获取图像的分割阈值,Ghosh使用神经网络
对大噪声的图像进行分割。使用PCA神经网络提取图像特征来对图像进行分类,用神经网络对人类染色体图像进行分类。神经网络还可与小波变换相结合(MCNN)对手写体数字进行多分辨率识别。 2 遗传算法 遗传算法(Genetic Algorithm,GA)是模拟生物进化论的自然选择和遗传学进化过程的计算模型,是一种通过模拟自然进化过程随机搜索最优解的方法,体现了适者生存、优胜劣汰的进化原则,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定,具有并行性和较强的全局寻优能力。 遗传算法把问题的解表示成染色体,求解步骤如下: (1)编码:定义问题的解空间到染色体编码空间的映射,一个候选解(个体)用一串符号表示。 (2)初始化种群:在一定的限制条件下初始化种群,该种群是解空间的一个子空间。 (3)设计适应度函数:将种群中的每个染色体解码成适于适应度函数的形式,计算其数值。 (4)选择:根据适应度大小选择优秀个体繁殖下一代,适应度越高,选择概率越大。 (5)交叉:随机选择两个用于繁殖下一代的个体的相同位置,在选中的位置实行交换。 (6)变异:对某个串中的基因按突变概率进行翻转。 (7)从步骤4开始重复进行,直到满足某一性能指标或规定的遗传代数。 GA在图像分割领域应用最为成熟,只要有两种应用,一是在多种分割结果中搜索最佳分割结果,二是搜索图像分割算法的最优参数,如用来确定图像最
佳分割阈值。Jin Cong等使用最小误差概率做为适应度函数来搜索图像最佳分割阈值,Lee SU将GA用于分割阈值计算,提高了分割效率,Bhanu使用GA在多个分割参数空间中搜索最优分割参数,提出了动态环境中图像分割系统,大大提高了环境适应性,Jiang Tian-zhi使用GA搜索最优细胞轮廓模型参数,对高噪声细胞图像进行分割,Chun Dae N使用GA对灰度图像的区域进行1/3页模糊测量,搜索一最佳区域。GA在图像增强方面的应用主要是搜索最优或次优控制参数的过程。GA在图像恢复中的应用主要解决高噪声图像的恢复。在图像压缩中,GA能有效解决分形压缩的最优匹配问题,提高了压缩比和精度,可用于低比特率的图像压缩。GA在图像匹配方面的应用主要解决速度问题,通过减少搜索位置的数量来减少计算量,提高效率。 3 蚁群算法 蚁群算法(Ant Colony,AC)是Dorigo于1992年提出,是一种在图中寻找最优路径的概率型算法,其灵感来源于蚂蚁觅食,通过在所经路径上留下信息素来相互传递信息,信息素浓度较高的线路就会吸引更多的蚂蚁,经过多次迭代,蚂蚁就能找到蚁巢到食物的最短路径,该算法具有并行性、强鲁棒性、正反馈性和自适应性,能用于解决大多数优化问题,在图像分割、边缘检测、分类、匹配、识别等领域有重要应用。 韩彦芳等提出了基于模糊聚类和蚁群算法相结合的图像分割,通过设置启发式引导函数和初始聚类中心减少算