好文档 - 专业文书写作范文服务资料分享网站

同济大学第六版高等数学上下册课后习题答案5-3

天下 分享 时间: 加入收藏 我要投稿 点赞

习题5?3

1? 计算下列定积分?

(1)??sin(x?)dx?

32 解

?? ??cos4?2?11?cos???0? 3322?21???sin(x?)dx??cos(x?)33???2

(2)??2 解

dx11?2???2(11?5x)35??2(11?5x)?(11?5x)31dx?

1?2??1151? ?16?2??1?2?1010512

(3)?02sin?cos3?d??

??20sin?cos3?d????2scos3?dsin?0?

?1 ??cos4?2??1cos4??1cos40?1?

044244 (4)?0(1?sin3?)d?? 解

?

?0?0?(1?sin3?)d???0d???0sin2?dcos????0????0(1?cos2?)dcos??

1 ???(cos??cos3?)3 (5)??2cos2udu?

64????

3

? 解

???2cos261?1udu???2(1?cos2u)du?u262??261?sin2u4??2

61??1??3 ?(?)?(sin??sin)???

2264368

(6)?0 解

22?x2dx?

?02?令x?2sint?22cost?2costdt?2(1?cos2t)dt2?x2dx?0?0?201 ?(t?sin2t)2??2?

(7)?? 解

228?2y2dy?

令y?2sinx2?4?2cosx?2cosxdx?4??228?2y2dy?2???224?y2dy?

?22?4(1?cos2x)dx?2??412(x?sin2y)2?4??4?2(??2)?

(8)?1121?x2x2dx?

?1121?x2x2?令x?sint?cost122(dx?costdt???sin2t??sin2t?1)dt?(?cott?t)44??24?1??4?

a (9)?0x2a2?x2dx? 解

?0xa2令x?asint?a4222a?xdx?0asint?acost?acostdt?4224a?02(1?cos4t)dt?8t?02sin?22tdt

a4 ?8??20a4?sin4t32?20a4?? ?16

(10)?13dxx21?xdx2?

?13令x?tant2x?21?x??tan2t?sect?sec34?12tdt

1dt?? ???2sint4sint3cost??34?2?23? 3

(11)??1 解

1xdx5?4x?

1??141xdx令5?4x?u111132(5?u)du??(5u?u)?38835?4x1?? 36

(12)

?11?dxx?

?11?14dx令x?ux211?11?u?2udu?2?1(1?1?u)du?2(u?ln|1?u|)2212?2(1?ln)?

3

dx1?x?1dx1?x?1 (13)?34?

?

134令1?x?u?110112?(?2u)du?20(1?)du?2(u?ln|u?1|)210u?12u?1??1?2ln2?

(14)?02axdx3a?x22?

?02axdx3a?x22??12a1d(3a2?x2)??3a2?x2?023a2?x22a0?a(3?1)?

(15)?0te 解

1?t22dt?

?t2210?1?1?e2?0tee21?t22dt???0e1?t22td(?)??e22?

(16)?1 解

dxx1?lnxdxx1?lnxdx2?

e21?1e2??1e211?lnxdlnx?21?lnx?2(3?1)?

(17)?0x?2x?2

00dx1 解 ??22???2dx?arctan(x?1)2x?2x?21?(x?1) (18)?2?cosxcos2xdx?

?2?2?

0?2?arctan1?arctan(?1)??2?

?

?2cosxcos2xdx?2(1?2sin2????22???2x)dsinx?(sinx?sin3x)3?2??22?? 3

(19)?2?cosx?cos3xdx?

?2?

??2??2cosx?cosxdx??2?cosx1?cos2xdx?23?

????cosx(?sinx)dx??20?2032cosxsinxdx?cos2x30??232?cos2x3?204? 3 (20)?01?cos2xdx? 解

?

?0?0??1?cos2xdx?2?0sinxdx??2cosx??22?

2? 利用函数的奇偶性计算下列积分? (1)???x4sinxdx?

? 解 因为x 4sin x在区间[??? ?]上是奇函数? 所以???x4sinxdx?0? (2)?2?4cos4?d??

?2

?

?24cos4?d???2??2?24cos4?d?0??8?02(??1?cos2x2)d?2

?2?2(1?2cos2x?cos20?312x)d??2?02(?2cos2x?cos4x)d?

22?201 ?(3??2sin2x?sin4x)4?3?? 2

(3)?12?12(arcsinx)21?x2dx?

?12?12(arcsinx)21?x2dx?2?120(arcsinx)21?x2dx?2?02(arcsinx)2d(arcsinx)1

12?332 ?(arcsinx)? ?03324325xsinxdx? (4)??54 2x?2x?1325xsinxx3sin2xdx?0? 解 因为函数4是奇函数? 所以??5422x?2x?1x?2x?1

3? 证明?

22??a?(x)dx?2?0?(x)dx? 其中?(u)为连续函数?

aa

证明 因为被积函数?(x2)是x的偶函数? 且积分区间[?a? a]关于原点对称? 所以有

22??a?(x)dx?2?0?(x)dx? aa

4? 设f(x)在[?b? b]上连续? 证明??bf(x)dx???bf(?x)dx?

bb 证明 令x??t? 则dx??dt? 当x??b时t?b? 当x?b时t??b? 于是 而 所以

??bf(x)dx??bbb?bf(?t)(?1)dt???bf(?t)dt?

b

??bf(?t)dt???bf(?x)dx? ??bf(x)dx???bf(?x)dx?

bbb

5? 设f(x)在[a? b]上连续?? 证明?af(x)dx??af(a?b?x)dx?

bb 证明 令x?a?b?t? 则dx?d t? 当x?a时t?b? 当x?b时t?a? 于是 而 所以

?af(x)dx??bf(a?b?t)(?1)dt??af(a?b?t)dt? ?af(a?b?t)dt??af(a?b?x)dx? ?af(x)dx??af(a?b?x)dx?

bbbbbab

6? 证明?

(x?0)?

1?x2111 证明 令x?? 则dx??2dt? 当x?x时t?? 当x?1时t?1? 于是

txt?x1?x21dx??1x1dx

1111dx1x??(?)dt?dt? ?x?2?122111?xt1?tx1?2t1

1?x21dxx所以 ?x? ?2?211?x1?x

?1x111?t21dxdt??1x11dx?

7? 证明?

?1m1nnmx(1?x)dx?x(1?x)dx? 00?

1 证明 令1?x?t ? 则?0xm(1?x)ndx???1(1?t)mtndt??0(1?t)mtndt??0xn(1?x)mdx?

101

同济大学第六版高等数学上下册课后习题答案5-3

习题5?31?计算下列定积分?(1)??sin(x?)dx?32解????cos4?2?11?cos???0?3322?21???sin(x?)dx??cos(x?)33???2(2)??2解dx11?2???2(11?5x)35??2(11
推荐度:
点击下载文档文档为doc格式
02laq54r0i2i4cx3q5al1oirv327wf00pja
领取福利

微信扫码领取福利

微信扫码分享