好文档 - 专业文书写作范文服务资料分享网站

陕西省高中数学 第一章 推理与证明 解题思想方法 反证法素材 北师大版选修2-2

天下 分享 时间: 加入收藏 我要投稿 点赞

反证法

与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。

法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。

具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。

应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。 实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设;

第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。

在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。

在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。

Ⅰ、再现性题组:

1. 已知函数f(x)在其定义域内是减函数,则方程f(x)=0 ______。 A.至多一个实根 B.至少一个实根 C.一个实根 D.无实根 2. 已知a<0,-1ab> ab2 B. ab2>ab>a C. ab>a> ab2 D. ab> ab2>a 3. 已知α∩β=l,a α,b β,若a、b为异面直线,则_____。 A. a、b都与l相交 B. a、b中至少一条与l相交 C. a、b中至多有一条与l相交 D. a、b都与l相交

4. 四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。(97年全国理)

A. 150种 B. 147种 C. 144种 D. 141种

【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A;

2小题:采用“特殊值法”,取a=-1、b=-0.5,选D; 3小题:从逐一假设选择项成立着手分析,选B;

4小题:分析清楚结论的几种情况,列式是:C10-C6×4-3-6,选D。 Ⅱ、示范性题组:

例1. 如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点。求证:AC与平面SOB不垂直。

【分析】结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。

【证明】 假设AC⊥平面SOB,

∵ 直线SO在平面SOB内, ∴ AC⊥SO, ∵ SO⊥底面圆O, ∴ SO⊥AB,

∴ SO⊥平面SAB, ∴平面SAB∥底面圆O,

44这显然出现矛盾,所以假设不成立。 即AC与平面SOB不垂直。

【注】否定性的问题常用反证法。例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。

例2. 若下列方程:x2+4ax-4a+3=0, x2+(a-1)x+a2=0, x2+2ax-2a=0至少有一个方程有实根。试求实数a的取值范围。

【分析】 三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实根。先求出反面情况时a的范围,再所得范围的补集就是正面情况的答案。

【解】 设三个方程均无实根,则有:

1?3??a??22?△1?16a2?4(?4a?3)?0??31?22,解得,即-

3时,三个方程至少有一个方程有实根。 2【注】“至少”、“至多”问题经常从反面考虑,有可能使情况变得简单。本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(△≥0)a的取值范围,再将三个范围并起来,即求集合的并集。两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。

例3. 给定实数a,a≠0且a≠1,设函数y=

1x?1 (其中x∈R且x≠),证明:①.ax?1a经过这个函数图像上任意两个不同点的直线不平行于x轴; ②.这个函数的图像关于直线y=x成轴对称图像。(88年全国理)。

【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。 【证明】 ① 设M1(x1,y1)、M2(x2,y2)是函数图像上任意两个不同的点,则x1≠x2,假设直线M1M2平行于x轴,则必有y1=y2,即

x1?1x2?1=,整理得a(x1-x2)=x1-

ax1?1ax2?1x2∵x1≠x2 ∴ a=1, 这与已知“a≠1”矛盾,

因此假设不对,即直线M1M2不平行于x轴。

陕西省高中数学 第一章 推理与证明 解题思想方法 反证法素材 北师大版选修2-2

反证法与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推
推荐度:
点击下载文档文档为doc格式
02d9k6odeh6rgfk15sw18xzko02xvg00fuf
领取福利

微信扫码领取福利

微信扫码分享