2 (A?B)2???2?2??2?25???2???814??1429?5????
38??68???1但 A2?2AB?B2???411???812??3?????所以(A?B)2?A2?2AB?B2
(3)(A?B)(A?B)?A2?B2吗? 解 (A?B)(A?B)?A2?B2
0???1016??1527?4????
2 因为A?B???2?2?5??0 A?B???0?2??0?05???2?1??
2 (A?B)(A?B)???2?2???0?01???6?9??
38??10???2而 A2?B2???411???34??1?????故(A?B)(A?B)?A2?B2
8?7?? 6? 举反列说明下列命题是错误的? (1)若A2?0
则A?0?
0 解 取A???0?1 解 取A???0? 解 取
1?0??1?0?? 则A2?0 但A?0
(2)若A2?A? 则A?0或A?E?
则A2?A? 但A?0且A?E
0? 则X?Y ?
(3)若AX?AY? 且A
10? A???00???11? X????11???11? Y???01???
则AX?AY? 且A0? 但X?Y ?
A3
? ? ?
Ak
10?? 求A2
7? 设A????1???10??10???10? 解 A2????1???1??2?1???????10??10???10? A3?A2A???2?1???1??3?1??????? ? ? ? ? ? ?
10 Ak???k?1??????10? 8? 设A??0?1?? 求Ak ?
?00???? 解 首先观察
??10???10???22?1? A2??0?1??0?1???0?22???00???00???00?2???????
??33?23?? A3?A2?A??0?33?2??00?3?????44?36?2? A4?A3?A??0?44?3??00?4?????55?410?3? A5?A4?A??0?55?4??00?5??? ? ? ? ? ? ?
??kk?k?1k(k?1)?k?2?2k A??0?kk?k?1?00k?? 用数学归纳法证明? 当k?2时? 显然成立? 假设k时成立,则k?1时,
??? ??
??kk?k?1k(k?1)?k?2?????10?2 Ak?1?Ak?A??0?kk?k?1??0?1?
?00??00???k????????k?1(k?1)?k?1(k?1)k?k?1???2 ??0?k?1(k?1)?k?1???k?100?????由数学归纳法原理知?
??kk?k?1k(k?1)?k?2???2 Ak??0?kk?k?1??00??k???? 9? 设A是对称矩阵? 证明 因为AT?A
所以
B为n阶矩阵,且A为对称矩阵,证明BTAB也
(BTAB)T?BT(BTA)T?BTATB?BTAB从而BTAB是对称矩阵?
10? 设A B都是n阶对称矩阵,证明AB是对称矩阵的
BT?B
且AB?BA
所以
充分必要条件是AB?BA
证明 充分性? 因为AT?A (AB)T?(BA)T?ATBT?AB即AB是对称矩阵? 必要性? 因为AT?A
BT?B
且(AB)T?AB 所以
AB?(AB)T?BTAT?BA
11? 求下列矩阵的逆矩阵?
1 (1)??2?2?? 5??12? |A|?1? 故A?1存在? 因为 解 A???25????A11A21??5?2? A*???AA????21??
??1222??5?2? 故 A?1?1A*????21??|A|??cos??sin?? (2)??sin?cos?????cos??sin?? |A|?1?0? 故A?1存在? 因为 解 A???sin?cos?????A11A21??cos?sin?? A*???AA????sin?cos???
??1222??cos?sin?? 所以 A?1?1A*????sin?cos???|A|???12?1? (3)?34?2??
?5?41????12?1? 解 A??34?2?? |A|?2?0? 故A?1存在? 因为
?5?41????A11A21A31???420? A*??A12A22A32????136?1??
????3214?2?AAA??132333????210??13?11?1所以 A?A*???3???
|A|22???167?1???a1a0???2 (4)??(a1a2? ? ?an ?0) ?
??0?a?n??a1?0?a?2 解 A??? 由对角矩阵的性质知 ???0?a?n??1??a10?1?a?2?? A?1?????10???an??? 12? 解下列矩阵方程?
2 (1)??1?5?X??4?6??
?21?3????