好文档 - 专业文书写作范文服务资料分享网站

澳大利亚2014高中奥数竞赛试题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

x3

(A)?2

(B)?

12

x2

(C)

34

x

32

4

(D)1(E)

Wehave0

64

16

64

4

64

hence(C).

2.

2014S10

ppIf=3thenequalsp?2qq(A)?3

(B)3

(C)

1

3

(D)

p

=3,q23

(E)2

Wehavep=3(p?2q),so6q=2pandp=3q.Then

hence(B).

3.

2014S15

Inthediagram,PS=5,PQ=3,??PQSisright-angledatQ,∠QSR=30?andQR=RS.ThelengthofRSis

√3

(A)(B)3(C)2

2

√43(D)(E)4

3

R

||||Q3P

5

30?S

Copyright ? 2014, 2019 Australian Mathematics Trust AMTT Limited ACN 083 950 341 (Set1)

— SeniorDuetotheright-angledtriangle??PQS,Pythagoras’theoremgivesQS=4.Then??QRSisisosceles,soitsaltitudeRTbisectsQS.

Q3P

2T5

R

||60?||xS

√3so

230?Now,??SRTisstandard30?,60?√,90?trianglewithRT:RS:ST=1:2:

2443thatx=RS=√ST=√=,

333

hence(D).

42

√=.

cos30?3Comment

Thisproblemcanalsobesolvedusingtrigonometry:x=4.

2014S20

Giventhatf1(x)=(A)

x2014x+1

x

andfn+1(x)=f1(fn(x)),thenf2014(x)equalsx+12014x2014x+1

(C)

xx+2014

(D)

2014xx+1

(E)

x

2014(x+1)

(B)

Alternative1

????x

=f2(x)=f

x+1

xx

=

1x+x+12x+1

x

xx2x+1==f3(x)=x+1x+2x+13x+12x+1andingeneral,byinduction

x

xxxnx+1fn(x)==?fn+1(x)=x==,

nx+1+1x+nx+1(n+1)x+1nx+1x

,sof2014(x)=

2014x+1

=

xx+1x+x+1

hence(A).

Alternative2Consider

1

.fn(x)1111

=1+=?=f1(fn(x))=1+f1(x)xfn+1(x)fn(x)

111

=1+=2+=···=?

f2014(x)f2013(x)f2012(x)

12014x+11

=2014+=···=2013+

f1(x)xx

Hencef2014(x)=

x

,

2014x+1

hence(A).

AMC Practice Questions and Solutions — Senior5.

2014S25Thesequence

2,2,2

2

22

,2

22

2

,...

isde?nedbya1=2andan+1=2anforalln≥1.Whatisthe?rstterminthesequencegreaterthan10001000?(A)a4=22

22

(B)a5=22

222

(C)a6=22

2222

(D)a7=22

222

22

(E)a8=22

222222

Wewantan>10001000=103000.Weknowthata1=2,a2=22=4,a3=24=16

anda4=216=65536,alllessthan103000.Also210=1024>103,sothatwecanestimatea5,

a5=265536=(210)655326>(103)655326=64×1019659

Thisisgreaterthan103000,

hence(B).

6.

2014S26

Whatisthelargestthree-digitnumberwiththepropertythatthenumberisequaltothesumofitshundredsdigit,thesquareofitstensdigitandthecubeofitsunitsdigit?

Alternative1

Letthenumberbeabc.Then

100a+10b+c=a+b2+c399a+10b?b2=c(c2?1)

99a+b(10?b)=(c?1)c(c+1)

Considerthepossibilities:

99a99×1=9999×2=19899×3=29799×4=39699×5=49599×6=59499×7=69399×8=79299×9=891b(10?b)1×9=92×8=163×7=214×6=245×5=256×4=247×3=218×2=169×1=9(c?1)c(c+1)1×2×3=62×3×4=243×4×5=604×5×6=1205×6×7=2106×7×8=3367×8×9=5048×9×10=720Lookingatthepossibilitiesfor99a+b(10?b)=(c?1)c(c+1),wehavetwo:99+21=120=?a=1,b=3or7,c=5=?n=135orn=175.495+9=504=?a=5,b=1or9,c=8=?n=518orn=598.

So,therearefour3-digitnumberswhichsatisfytherequirementsandthelargestofthesefournumbersis598,

hence(598).

AMC Practice Questions and Solutions — SeniorAlternative2

Thenumberabcisequaltoa+b2+c3,andthesearethepossiblevaluesofb2andc3:

DigitSquareCube

000111248349162764

525125

636216

749343

864512

981729

Wetrythesenumbersinanadditiongrid,tryingthelargevaluesofc?rst,then?llinginpossiblevaluesforaandb.Thistrial-and-errorsearchispresentedhereasatree.

87298b9a729ab9a:b2:c3:a+abca512ab877297b965126b85+1+2=87+3+9=196+0+2=88+2+9=1982(nob2)7298b983(nob2)7298b9600512608??85159??051515128512855125b8a343ab7abc<598Likewiseforc=6,5,...Thelargestsolutionfoundis598,andanysolutionsonbranchesc=7,c=6,...,c=1mustbelessthanthis,hence(598).

01w4t7nos60n19a8hrgx9da6a52gca00h11
领取福利

微信扫码领取福利

微信扫码分享