为太阳能、地热能、生物能等可再生能源的开发提供资助,还对核电以及天然气给予了相关政策支持。
欧盟自20世纪90年代初开始就高度重视能源战略。1997年,欧盟在‘可再生能源发展白皮书》中提出,可再生能源在一次能源中的比例要由1997年的6%提高到2010年的12%,2020年提高到20%,2050年提高到50%。1999年欧盟发布的《欧洲共同体战略起飞白皮书》提出了实现可再生能源份额提高的行动计划,行动计划包括;进一步鼓励可再生能源利用的政策、加强成员国之间的合作、鼓励各国在可再生能源领域内的投资,并加强可再生能源的信息传播与服务。德国政府自20世纪70年代起,就开始花大力气促进可再生能源技术的开发,迄今已投入研究经费17.4亿欧元,并在诸多方面取得显著成效。如德国的风能发电量占全球的三分之一,并占德国电力生产总量的4%,远高于世界0.4%的平均水平。
日本是一个常规能源极度短缺的国家,这一状况促使日本形成了积极开发和利用可再生能源的观念。自1973年石油危机后,日本开始大力提高能源效率,实施能源多样化方针,并积极引进天然气和核能,摆脱对石油的依赖。同时,太阳能发电和风能发电在日本也得到了迅速发展和普及。到2001年,天然气在日本能源消费构成中所占的比例已经从第一次石油危机时的1.5%提高到13.8%,核电占日本能源消费的比例则达到14.1%。日本政府制定的《新日光计划(1994~2030)》提出:到2010年可再生能源供应量和常规能源的节能量要占能源供应总量的10%,2030年达到34%【2】。
中国作为一个迅速崛起的发展中国家,面临着经济增长与环境保护的双重压力。2004年6月,我国在《能源中长期发展规划纲要》中提出要大力开发水电、积极推进核电、鼓励发展风电、生物质能等可再生能源,到2020年中国可再生能源发电装机容量将占总装机容量的30%以上。2005年2月28日,我国颁布了《中华人民共和国可再生能源法》,将可再生能源列为能源发展的优先领域,明确规范了政府和社会在可再生能源开发利用方面的责任与义务,并制定了一系列制度和措旌,为可再生能源的发展提供了法律保障。2006年3月公布的“十一五”规划也明确提出;要构筑稳定、经济、清洁的能源供应体系,大力发展可再生能源。规划提出,到2020年把可再生能源占一
次能源供应的比重,从目前的7%提高到15%。为实现这一目标,中国未来15年将大约需要投资1.5万亿元。经过多年的发展,我国可再生能源的开发利用己取得了很大进展,其中小水电、太阳能利用和沼气能开发的规模和技术发展水平均处于国际领先地位,风电装机容量也位居世界第10位,至2003年底,全国己建成36个风电厂,并网风力发电装机容量为56.9万KW,单机容量750KW以下大型风力发电设备已形成了自主生产能力,兆瓦级的大型风力发电设备正在研发。
第二届国际可再生能源大会于2005年11月7日至8日在北京人民大会堂召开,共有78个国家和地区的政府代表参加,联合国秘书长安南和国家主席胡锦涛向大会发来书面致辞。大会通过了《北京宣言》,呼吁各国加快可再生能源的发展,以应对能源压力。胡锦涛主席在给大会的致辞中强调:“加强可再生能源开发利用,是应对日益严重的能源和环境问题的必由之路,也是人类社会实现可持续发展的必由之路。国际社会应该在研究开发、技术转让、资金援助等方面加强合作,使可再生能源在人类经济社会发展中发挥更大作用,造福各国人民。”他还指出“加强全球合作,妥善应对能源和环境挑战,实现可持续发展,是世界各国的共同愿望,也是世界各国的共同责任。大力发展可再生能源已成为国际社会的共识。”【3】
1.1.2 可再生能源并网发电系统
一般能源从其原始状态到输入电网的过程大体可分为:能源转化、能量转移或二次转化、能量存储及功率控制等步骤[4]。各种能源由于其转化为电能的方式不同,将其送入电网时必须使用交流技术按用户的要求对其进行调整和控制;另外,大部分可再生能源直接产生的能量通常是不稳定的,它们在并网时如果不加控制和调节,就会对电网造成冲击,同时为了保证将尽可能多的有功能量送入电网,在可再生能源发电系统中还要加上储能环节,这些过程都需要利用变流技术对其进行控制,因此可再生能源在从其原始状态转化到可供人们实际应用的电能过程中与变流技术是密不可分的。一般的可再生能源并网发电系统由直流侧处理电路、储能装置,直流负载,逆变器、滤波电路等组成,其系统组成结构图见图1-1:
可再生能源DC/DC电路控制逆变器(DC/AC电路)器滤波电路公共电网AC/DC电路交流直流侧处理电路储能装置(蓄电池组)直流负载负载 图1-1 可再生能源并网发电系统组成结构图
直流侧处理电路主要是DC/DC电路或AC/DC电路,由于可再生能源有多种形态,且转化为电能的方式不同,决定了可再生能源在转化为直流电能时有不同的直流侧处理电路,如光伏发电需使用DC/DC电路,而风力发电则需使用AC/DC电路(整流器)。
控制器及储能装置的主要作用是当可再生能源受外界因素的影响很大时,经转化后的电能很不稳定,此时需要采用储能装置将电能储存起来,这样不仅有利于能量回馈的控制,而且可以使系统更加稳定的运行。
逆变器是可再生能源并网发电系统的核心组成部分。并网用逆变器除了能将可再生能源产生的电能输送给公用电网外,还应该具有很高的可靠性、完善的保护功能以及较高的效率。目前,可再生能源并网发电系统的主要研究热点也集中在逆变器这部分。
滤波电路包括滤波器和隔离变压器。隔离变压器的主要作用是保证逆变电压和电网电压匹配,同时使电网和可再生能源发电系统相互电气隔离;滤波器的主要作用是用来滤除并网电流的谐波。
1.2 并网逆变器的研究现状及趋势
伴随着世界范围内开发利用可再生能源的热潮,很多国家都纷纷研发了光伏发电、风力发电等可再生能源并网发电系统。人们对可再生能源并网发电的技术进行了大量的研究,并使得该技术得到了迅速的发展和应用[5]。目前广泛应用于可再生能源回馈电网系统中的方案是;首先将可再生能源转化成电能的形式,然后将电能调节成满足正弦波脉宽调制SPWM(Sinusoidal Pulse Width Modulation)全桥逆变器需要的直流电压,最后经SPWM全桥逆
变器将可再生能源回馈给交流电网。在整个系统中最主要的环节就是逆变器,它采用的是SPWM逆变技术。在理论和实践上,这种方案能够满足可再生能源回馈电网的要求,但由于该方案使用了同步、锁相(PLL)、SPWM脉冲发生器、低通滤波等诸多模拟环节,而且控制方法比较落后,因此使得并网逆变装置的控制繁琐,电路复杂,可靠性低,硬件成本高,并网效果不是十分理想,产品价格昂贵,应用得到限制。
但是,随着世界各国对可再生能源开发重视程度的不断提高,针对并网逆变器的技术研究也越来越多,人们针对以往控制技术的不足,纷纷提出了很多的研究方向,其大体可以分为以下几个方向[6]: 1 并网逆变器的拓扑分类及控制方法的研究
目前研究人员提出针对不同的系统要求,逆变器应该有着各种不同的拓扑结构,对于功率较小的并网逆变器可以采用高效、低成本的单极变换器;而多级逆变器变换结构可以使用在大功率、宽电压范围的输入的应用场合。除此以外,逆变器的拓扑结构中还包括单相、三相:隔离、非隔离;功率单向流动、双向等各种形式。如:并网逆变器采用双向功率流动的拓扑,在并网工作时,既可以向电网提供电能,同时也可以当电网电能富足时,从公用电网吸收电能,并将其存储起来。因此各种拓扑可以分别使用在不同的场合,并且这些拓扑结构可以相互组合成各种不同的形式,以满足各种要求。
在控制方法上,随着各种高速的数字信号处理器DSP(Digital Singnal Processor)的出现,将先进的数字控制应用到并网逆变器的控制中的研究将越来越多。并且针对各种控制方法的缺点,将模拟控制和数字控制相结合以到达理想的控制效果,这也是目前研究高性能并网逆变器的一个热点。 2 逆变器并网控制技术的研究
研究人员认为作为一个功能完整的并网逆变器系统,其工作模式应比通常的独立逆变器更为复杂,它不仅可在无市电接入时独立作为电压源逆变,也能在并网时作为电流源工作。针对这些要求,在逆变器并网控制技术上提出了以下几个方面的研究方向:
(1)逆变器两种工作模式的无缝切换技术; (2)逆变器工作过程中的同步锁相和电压跟踪技术; (3)并网工作下的防孤岛技术;
(4)达到并网电压、电流谐波标准的闭环控制技术。 3 多台并网逆变器并联技术的研究
多台逆变器并联可实现大容量供电和冗余供电,因而被公认为当今逆变技术发展的重要方向之一[7]。多台逆变器并联实现扩容可大大提高系统的灵活性,使系统的体积重量大为降低,同时其主开关器件的电流应力也可减少,从根本上降低成本和提高功率密度及系统可靠性。研究者认为目前主从式结构是可再生能源并网发电系统比较理想的电路结构,而主从式结构就是采用多组逆变器模块并联运行的模式,即在并联的若干个逆变模块中,任意选取一个作为主逆变模块,而其余作为从模块跟随主模块工作,因而该结构能极大的提高可再生能源并网发电系统的可靠性,实现功率合成,增强故障冗余能力。国外一些发达国家都采用了主从式的逆变并网结构,在国内目前此技术还不够成熟。
4 逆变器并网滤波器设计的研究
并网逆变器在工作时有电压控制和电流控制两种工作模式。在电压控制模式下,逆变输出滤波器通常由电感L和电容C构成,它们影响到输出的动态响应。在电流控制模式下,会选用L或LCL的结构,主要由电感元件决定输出的动态响应。研究人员认为逆变器作为电压源独立运行时,滤波器应通常采用LC结构i逆变器作为电流源并网时,则可以直接通过L、LC或者LCL和电网相联。现在更多的研究和产品选择LCL结构,采用LCL的结构比LC结构有更好的衰减特性,对高频分量呈高阻态,抑止电流谐波,并且同电网串联的电感L还可以起到抑止冲击电流的作用[8]。
1.3 本文的结构及主要内容
本文的结构和主要内容大致安排如下:
第l章,绪论。主要论述了当前可再生能源开发的现状和前景,总结了当前并网逆变技术的研究现状和发展趋势,介绍了本课题的选题意义及主要内容。
第2章,单相逆变器总体设计。主要描述了并网逆变器的工作原理和设计了主电路的拓扑结构图,并且对主电路中主要参数进行计算选择。对逆变