好文档 - 专业文书写作范文服务资料分享网站

环境工程原理课后答案(2-9章)

天下 分享 时间: 加入收藏 我要投稿 点赞

第二章 质量衡算与能量衡算

2.1 某室内空气中O3的浓度是0.08×10-6(体积分数),求:

(1)在1.013×105Pa、25℃下,用μg/m3表示该浓度;

(2)在大气压力为0.83×105Pa和15℃下,O3的物质的量浓度为多少? 解:理想气体的体积分数与摩尔分数值相等 由题,在所给条件下,1mol空气混合物的体积为

V1=V0·P0T1/ P1T0 =22.4L×298K/273K =24.45L

所以O3浓度可以表示为

0.08×10-6mol×48g/mol×(24.45L)-1=157.05μg/m3

(2)由题,在所给条件下,1mol空气的体积为

V1=V0·P0T1/ P1T0

=22.4L×1.013×105Pa×288K/(0.83×105Pa×273K) =28.82L

所以O3的物质的量浓度为

0.08×10-6mol/28.82L=2.78×10-9mol/L

2.2 假设在25℃和1.013×105Pa的条件下,SO2的平均测量浓度为400μg/m3,若允许值为0.14×10-6,问是否符合要求?

解:由题,在所给条件下,将测量的SO2质量浓度换算成体积分数,即

RT?1038.314?298?103?9?6 ?A??400?10?0.15?105pMA1.013?10?64大于允许浓度,故不符合要求

2.3 试将下列物理量换算为SI制单位: 质量:1.5kgf·s2/m= kg 密度:13.6g/cm3= kg/ m3

精选

压力:35kgf/cm2= Pa 4.7atm= Pa 670mmHg= Pa

功率:10马力= kW 比热容:2Btu/(lb·℉)= J/(kg·K) 3kcal/(kg·℃)= J/(kg·K)

流量:2.5L/s= m3/h 表面张力:70dyn/cm= N/m 5 kgf/m= N/m

解:

质量:1.5kgf·s2/m=14.709975kg 密度:13.6g/cm3=13.6×103kg/ m3 压力:35kg/cm2=3.43245×106Pa 4.7atm=4.762275×105Pa 670mmHg=8.93244×104Pa

功率:10马力=7.4569kW

比热容:2Btu/(lb·℉)= 8.3736×103J/(kg·K) 3kcal/(kg·℃)=1.25604×104J/(kg·K)

流量:2.5L/s=9m3/h

表面张力:70dyn/cm=0.07N/m 5 kgf/m=49.03325N/m

2.4 密度有时可以表示成温度的线性函数,如

ρ=ρ0+At

式中:ρ——温度为t时的密度, lb/ft3;

ρ0——温度为t0时的密度, lb/ft3。 t——温度,℉。

如果此方程在因次上是一致的,在国际单位制中A的单位必须是什么? 解:由题易得,A的单位为kg/(m3·K)

精选

2.5 一加热炉用空气(含O2 0.21, N2 0.79)燃烧天然气(不含O2与N2)。分析燃烧所得烟道气,其组成的摩尔分数为CO2 0.07,H2O 0.14,O2 0.056,N2 0.734。求每通入100m3、30℃的空气能产生多少m3烟道气?烟道气温度为300℃,炉内为常压。

解:假设燃烧过程为稳态。烟道气中的成分来自天然气和空气。取加热炉为衡算系统。以N2为衡算对象,烟道气中的N2全部来自空气。设产生烟道气体积为V2。根据质量衡算方程,有

0.79×P1V1/RT1=0.734×P2V2/RT2

0.79×100m3/303K=0.734×V2/573K

V2=203.54m3

2.6某一段河流上游流量为36000m3/d,河水中污染物的浓度为3.0mg/L。有一支流流量为10000 m3/d,其中污染物浓度为30mg/L。假设完全混合。

(1)求下游的污染物浓度

(2)求每天有多少kg污染物质通过下游某一监测点。 解:(1)根据质量衡算方程,下游污染物浓度为

?m??1qV1??2qV2qV1?qV2?3.0?36000?30?10000mg/L?8.87mg/L

36000?10000(2)每天通过下游测量点的污染物的质量为

?m?(qV1?qV2)?8.87?(36000?10000)?10?3kg/d?408.02kg/d

2.7某一湖泊的容积为10×106m3,上游有一未被污染的河流流入该湖泊,流量为50m3/s。一工厂以5 m3/s的流量向湖泊排放污水,其中含有可降解污染物,浓度为100mg/L。污染物降解反应速率常数为0.25d-1。假设污染物在湖中充分混合。求稳态时湖中污染物的浓度。

解:设稳态时湖中污染物浓度为?m,则输出的浓度也为?m 则由质量衡算,得

精选

qm1?qm2?k?V?0

5×100mg/L-(5+50)?mm3/s -10×106×0.25×?mm3/s=0

解之得

?m=5.96mg/L

2.8某河流的流量为3.0m3/s,有一条流量为0.05m3/s的小溪汇入该河流。为研究河水与小溪水的混合状况,在溪水中加入示踪剂。假设仪器检测示踪剂的浓度下限为1.0mg/L。为了使河水和溪水完全混合后的示踪剂可以检出,溪水中示踪剂的最低浓度是多少?需加入示踪剂的质量流量是多少?假设原河水和小溪中不含示踪剂。

解:设溪水中示踪剂的最低浓度为ρ 则根据质量衡算方程,有

0.05ρ=(3+0.05)×1.0

解之得

ρ=61 mg/L

加入示踪剂的质量流量为

61×0.05g/s=3.05g/s

2.9假设某一城市上方的空气为一长宽均为100 km、高为1.0 km的空箱模型。干净的空气以4 m/s的流速从一边流入。假设某种空气污染物以10.0 kg/s的总排放速率进入空箱,其降解反应速率常数为0.20h-1。假设完全混合, (1)求稳态情况下的污染物浓度;

(2)假设风速突然降低为1m/s,估计2h以后污染物的浓度。 解:(1)设稳态下污染物的浓度为ρ 则由质量衡算得

10.0kg/s-(0.20/3600)×ρ×100×100×1×109 m3/s -4×100×1×106ρm3/s=0 解之得

精选

ρ=1.05× 10-2mg/m3

(2)设空箱的长宽均为L,高度为h,质量流量为qm,风速为u。 根据质量衡算方程

qm1?qm2?k?V?dm dt有

qm?uLh??k?L2h?带入已知量,分离变量并积分,得

d2Lh?? ?dt?积分有

36000dt??d?

1.05?10?210-6?6.6?10-5??ρ=1.15×10-2mg/m3

2.10 某水池内有1 m3含总氮20 mg/L的污水,现用地表水进行置换,地表水进入水池的流量为10 m3/min,总氮含量为2 mg/L,同时从水池中排出相同的水量。假设水池内混合良好,生物降解过程可以忽略,求水池中总氮含量变为5 mg/L时,需要多少时间?

解:设地表水中总氮浓度为ρ0,池中总氮浓度为ρ 由质量衡算,得

qV?0?qV??d?V?? dt即

dt?1d?

10?(2??)积分,有

?求得

t0dt??1d?

2010?(2??)5t=0.18 min

精选

环境工程原理课后答案(2-9章)

第二章质量衡算与能量衡算2.1某室内空气中O3的浓度是0.08×10-6(体积分数),求:(1)在1.013×105Pa、25℃下,用μg/m3表示该浓度;(2)在大气压力为0.83×105Pa和15℃下,O3的物质的量浓度为多少?解:理想气体的体积分数与摩尔分数值相等由题,在所给条件下,1mol空气混合物的体积为V
推荐度:
点击下载文档文档为doc格式
01g7t0gu2v207lq1bbd16zh7s4eqk601czx
领取福利

微信扫码领取福利

微信扫码分享