好文档 - 专业文书写作范文服务资料分享网站

【2020】人教版六年级数学小升初总复习数学归类讲解及训练(含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

参考答案:

1、说出下面各比例尺表示的意思。

1∶40000 表示图上距离是实际距离的

1,实际距离是图上距离的40000倍,图上1厘米

40000的距离代表实际距离40000厘米,即400米。

表示图上1厘米的距离代表实际距

离200千米。

2、判断:

①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1

︰2。 ┈┈┈┈ ( × )

②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

┈┈┈┈ ( √ )

③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离。┈┈┈ ( × ) 3、选择:

①如果某图纸所用的比例尺小于1,那么这幅图所表示的图上距离( A )实际距离。 A.小于 B.大于 C.等于

②学校操场长100米,宽60米,在练习本上画图,选用( B )作比例尺较合适。 A.1︰20 B.1︰2000 C.1︰200

4、一幅地图的线段比例尺是 ,这幅图上3厘米表示实际距离多少千米?这幅图上3厘米表示实际距离6千米。

5、 一种精密零件,画在图上是12厘米,而实际的长度是3毫米。求这幅图的比例尺。

图上距离 : 实际距离 = 比例尺

12厘米 = 120毫米 120 : 3 = 40 : 1 答:这幅图的比例尺是40 : 1。

6、 英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?

长:120米 = 12000厘米 12000 ×宽:80米 = 8000厘米 8000 ×

1 = 3厘米 40001 = 2厘米 4000答:长应画3厘米,宽应画2厘米。

7、在比例尺为1 :200000的一幅地图上,A城和B城相距5厘米,两城实际相距多少千米?

5 ÷

1 = 1000000厘米 = 10千米

200000答:两城实际相距10千米。

8、 一幅地图的线段比例尺是:

0 40 80 120 160千米,甲乙两城在

这幅地图上相距18厘米,两城间的实际距离是多少千米?丙丁两城相距660千米,在这幅地图上两城之间的距离是多少厘米?

18 × 40 = 720千米

660 ÷ 40 = 16.5厘米 或 66000000 ×

1 = 16.5厘米

4000000答:两城间的实际距离是720千米,在这幅地图上两城之间的距离是16.5厘米。

9、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。 (1)求这间教室的图上面积与实际面积。

图上面积:3 × 2 = 6平方厘米

实际长:3 × 500 = 1500厘米 实际宽:2 × 500 = 1000厘米 实际面积:1500 × 1000 = 1500000平方厘米 = 150平方米 答:这间教室的图上面积6平方厘米,实际面积是150平方米。 (2)写出图上面积和实际面积的比。并与比例尺进行比较。

图上面积和实际面积的比是:6 : 1500000 = 1 : 250000

与比例尺进行比较1 : 250000 = (1:500)2

10、下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。

电影院 ●30o ● ● 40o 广场 公园 ● 商店 (1)公园在广场的东面( 0.75 )千米处。 量得公园到广场的图上距离是1.5厘米,1.5 × 50000 = 75000厘米 = 0.75千米 (2)电影院在广场的( 北 )偏( 东 )( 60o )方向( 0.75 )千米处。

(3)商店在广场的( 南偏西 50o方向1.5千米处 )。量得商店到广场的图上距离是3厘米 11、小明家在百货商场的北偏西40°方向2500米处,图书馆在农业银行东偏南40°方向1500米处。下面是小明坐出租车从家去图书馆的路线图。已知出租车在3千米以内(含3千米)按起步价9元计算,以后每增加1千米车费就增加2元。请你按图中提供的信息算一算,小明一共要花多少元出租车费?

由图中信息可知小明家到百货商场有2500米,百货商场到农业银行与农业银行到图书馆都是1500米,小明坐出租车从家去图书馆一共要行2500 + 1500 + 1500 = 5500米,需要车费:9 + 2 × (5.5 – 3)= 14元

小学数学总复习专题讲解及训练(六)

主要内容

正比例和反比例

学习目标

1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。

2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。

考点分析

1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。 如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:

y = K(一定)。 x2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K(一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

典型例题

例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?

时间/时 1 2 240 3 360 4 480 5 600 6 720 …… …… 路程/千米 120 分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。

所以它们是两种相关联的量。

(3)路程和时间的比值始终不变,

120360240 = 120, = 120, = 120……这个132

01e8w98mcv00kc5204u903ypi6bk8900j1d
领取福利

微信扫码领取福利

微信扫码分享