滤波器的设计与实现 一、设计简介 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或PSPICE或PROTEL或其他软件仿真。 二、设计要求 完成电路设计;学习用计算机画电路图;学会利用Matlab或PSPICE或其他软件仿真。 三、设计路线 滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率次(通常是某个频率范围)的信号通过,而其他频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC元件或RC元件构成的无缘滤波器,也可以由RC元件和有源器件构成的有源滤波器。 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF),高通滤波器(HPF),带通滤波器(BPF),和带阻滤波器(BEF)四种。从实现方法上可分为FIR,IIR滤波器。 从设计方法上可分为切比雪夫滤波器,巴特沃思滤波器。从处理信号方面可分为经典滤波器和现代滤波器。 在这里介绍两种具体的滤波器设计方法: (1)切比雪夫滤波器:是在通带或阻带上频率响应幅度等波纹 波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。 这种滤波器来自切比雪夫多项式,因此得名,用以记念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(Пафнутий Львович Чебышёв)。 (2)巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 巴特沃斯滤波器的特性 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。 在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 无源滤波器与有源滤波器的比较 无源滤波器:这种电路主要有无源元件R、L和C组成有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 四、设计内容 根据电路理论,信号与系统,电路试验等课程的知识,分别设计出低通滤波器,高通滤波器,带通滤波器的电路图。 (1)有源低通滤波器 低通滤波器传递函数为: 1 G(s)?222 RCs?2RCs?1用pspice绘制电路图: 其中R1=R2=R4=1k?,C1=C2=0.1?F。 电源电压为1V 其上限截止频率为fH? 1=1592.3Hz 2?RC
好文档 - 专业文书写作范文服务资料分享网站