yyy?x?z?zy???所以,x?y?x?e?1????yex?xex?z.
?x?yx????(2)
??r11x??x2?y2?z2x?2x??;①
?x2x2?y2?z2r2x2?y2?z2???udu?r1xx?.【因为①】??2.??3. ?xdr?xrrr?2u??x?1.r3?x.???3r2.?r??x???x2??x???r3????r6【因为①】 1.r3?x.??3r2.x?? ???r?r6??r2?3x2r5; 同理可得
?2ur2?3y2 ?y2??r5; ?2ur2?3z2?z2??r5 所以,?2u?2u?2u?x2??y2??z2【因为②,③,④】
??3r2?3?x2?y2?z2?r5??3r2?3r2r5?0. (3)由T?x,t??e?ab2tsinbx,得
?T?t??e?ab2t??ab2??sinbx??ab2e?ab2tsinbx. ?T?x?e?ab2t?cosbx.b??be?ab2tcosbx.
?2T?ab2t?x2?be??sinbx.b???b2e?ab2tsinbx. 所以有
?T?22?t?aT2?x2??abe?abtsinbx. ② ③ ④
① ② 1?22x?ycos,x2?y2?0,?x2?y26.设f?x,y???求fx??0,0?,fy??0,0?.
?x2?y2?0,?0,【解】
f?0??x,0??f?0,0?因为lim ?x?0?x?????x??lim?lim?xcos?x?02?02cos?x?1??x?2?02?0
?x?011?0【上述结论中用到cos?1及lim?x?0,即利用有界量乘
?x?0?x?x以无穷小量还是无穷小量】,所以,fx??0,0??0. 同理,fy???0,0??0.
习题8.3
1.求下列函数的全微分.
x(1)z?4xy?;(2)z?ey2x2?y3;(3)u?xyz;(4)u?xyz.
【解】 (1)因为
?zx?z1?4x2?2,所以 ?8xy?,
?xy?yydz??2x??1??z?z??dx?dy??8xy?dx????4x?y2??dy. ?x?yy????x?y22(2)因为
?z?e?x?x2?y22?2?x?ex?y22x2?y2??xe1?; .2x??22?2x2?y2?x?y???zyex?y?由轮换对称性知,.所以
22?yx?ydz?e?z?z?xdx?ydy?. dx?dy?22?x?yx?yx2?y2(3)因为
?u?u?u?xz,?yz,?xy,所以, ?y?x?z du??u?u?udx?dy?dz?yzd?xxzd?yxyd. z?x?y?z(4)u?xyz. 因为
?u?u?u?xzyz?1,?yz,?xyzlny,所以, ?y?x?z?u?u?udx?dy?dz?yzdx?xzyz?1dy?xyzlnydz. ?x?y?z1z du?2.求下列函数在指定点的全微分.
?x? (2)u???y??,du|?1,1,1?.
???x?【解】(2)u???y??,du|?1,1,1?.
??因为
1z?u1?x??????xz?y???x?1?x??1?; ??????x??y?????z?y??y???11?1?1?zz?x???1x?u1?x??x????; ??????2??????y????z?y??y??yz?y??y?1z1?1z1?1z?1?1z?u?x??x??1?1?x??????ln?.??2?????????z?y??y??z?z?y??所以
du??u?u?udx?dy?dz ?x?y?z1?1z?x??1?ln??y????z2?.
????1?x?????z?y???1?1?x????dx??y???y?z????1?1z?x?1?x??????dy???y2?z?y????1?1z?x??1?ln??y????z2?dz.
????从而 du|?1,1,1??dx?dy.
4.求曲面S:z?x2?y2在点M0?1,1,2?处的切平面方程和法线方程.
【解】令F?x,y,z??x2?y2?z. 则曲面S在点M0处的切平面的法向量为 n??Fx??M0?,Fy??M0?,Fz??M0?? ??2x,2y,?1?|?1,1,2???2,2,?1?.
所以S在点M0处的切平面方程为
2.?x?1??2?y?1??1.?z?2??0. 化简得
2x?2y?z?2?0. 法线方程为
x?1y?1z?2. ??22?16.利用全微分求近似值. (1)
?1.02?3??1.97?3;
【解】(1)令z?f?x,y??x3?y3,则
3fx??x,y??2x2x?y33yxy?13,fy??x,y??2y2x?y33.
取x0?1,y0?2,?x?0.02,?y??0.03,则有
f?1?0.02,2?0.03??f?1,2??fx??1,2??0.02?fy??1,2????0.03?,
1?3??0.02?2???0.03??2.95.
21?22xysin,x?y?0,?22x?y8.已知函数f?x,y???
?x2?y2?0,?0,证明: 即:
?1.02?3??1.97?3(1)f?x,y?在点?0,0?处连续且偏导数存在; (2)f?x,y?在点?0,0?处可微. 【证】
(1)因为limf?x,y??limxysinx?0y?01x?y22x?0y?0 ?0【无穷小乘以有界量还是无穷小量】
?f?0,0?,所以f?x,y?在点?0,0?处连续. 又因为lim?x?0f?0??x,0??f?0,0?0?0?lim?0,所以fx??0,0??0;同理?x?0?x?xfy??0,0??0,所以f?x,y?在点?0,0?处偏导数存在.
(2)f?x,y?在点?0,0?处的全增量为
?z|?0,0??f?0??x,0??y??f?0,0???x?ysin1??x?2???y?2.
因为 lim?z?fx??0,0??x?fy??0,0??y??x?0?y?0??x?2???y?2?x?y?
1???y?2?lim?x?0?y?0??x?2???y?2sin??x?2?0,
所以,f?x,y?在点?0,0?处可微. 【上述结论用到了0??x?y??x???x?22???y?2sin1??x???x?2???y????y?2
??x.?y???y?2sin122
1??x?2???y?21?2?22??x????y?2????x?2???y?2?0???x,?y???0,0??
及夹逼准则 . 】
习题8.4
1.求下列复合函数的偏导数或全导数. (1)设z?euv,而u?sinx,v?x2,求(2)设z??lnx?,求
xydz; dx?z?z,; ?y?x?z?z,. ?y?x(3)设z?x2yf?x2?y2,xy?,求【解】
?z?zdudv?veuv,?ueuv;?cosx,?2x.所以由全导数公式,有 ?u?vdxdx2dz?zdu?zdv?.?.?veuvcosx?ueuv.2x?exsinx2xsinx?x2cosx. dx?udx?vdx2?dzx2sinxx2sinxn?ex2sinx?exsix【另解:因为z?e,故 2xsinx?x2coxs.】 dx(1)因为
??????(2)
???z?11????exyln?lnx?x?exyln?x??xyln(lnx?x?exyln?x??yln(lnx)?xy?.?? ?x?lnxx?????