好文档 - 专业文书写作范文服务资料分享网站

郑州大学高等数学下课后习题答案解析

天下 分享 时间: 加入收藏 我要投稿 点赞

无穷小量】.

xy24.证明极限lim不存在.

?x,y???0,0?x2?y4【证】(一)让动点P?x,y?沿直线y?0趋于点O?0,0?时,

x.02xy2?lim2?0. lim2x?0x?04x??0?x?y4y?0 (二)让动点P?x,y?沿抛物线y2?x趋于点O?0,0?时,

xy2x.x1 lim2. ?lim?x??0?x?y4x?0x2?x22y2?x

习题8.2

1.证明:函数f?x,y??4x4?y4在原点?0,0?处连续,但不存在偏导数fx??0,0?,

fy??0,0?.

【证明】 (一)因为

?x,y???0,0?limf?x,y??0?f?0,0?,所以,f?x,y?在?0,0?处连续.

44??x??04?0f?0??x,0??f?0,0?(二)因为lim ?lim?x?0?x?0?x?x ?lim?x?0?x?x不存在,所以不存在偏导数fx??0,0?;

由轮换对称性知,也不存在偏导数fy??0,0?. 2.求下列函数对各自变量的一阶偏导数.

(1)z?x3y?y3x; (2)z?lnxy;

y(3)z?exsinxy; (4)z?arctan;

xxey(5)z??1?xy?; (6)z?2.

yy【解】

(1)

?z?z?x3?3y2x . ?3x2y?y3;?y?x(2)因z?lnx?lny,故

?z1?z1?. ?;

?xx?yy(3)

?z?z?xexcosxy ?exsinxy?yexcosxy; ?y?x?x2?y??x?22?x?y2?y??x?1????x?1?y??2?x?y???1????x?y?z?(4)?xy?y?; ??2???22x?y?x??z??x1?yx2?2x?y2x?1?. ???22xx?y??(5)z??1?xy??eyln?1?xy?;

??1??y2?zy?1?yln?1?xy?yln?1?xy??????1?xy ; y.y?yln?1?xy??x?e?e????1?xy?x1?xy????

??1???z???eyln?1?xy??yln?1?xy??y?eyln?1?xy??ln(1?xy)?y?.x? ???y?1?xy???xy?y?1y?????1?xy?ln(1?xy)?xy?. ?1?xy??1?xy??ln(1?xy)??1?xy???zey?zeyy2?ey.2yxeyy2?2yxey?y?2?(6). ?2;?x??443?xy?yyyy?x2?y2,?z?3.求曲线?:?在点M0?2,4,5?处的切线方程及切线对于x轴的倾角的4?y?4,?度数. 【解】

(一)?的参数方程为

??x?x,??: ?y?4,?2x?16?z?4???(x为参数).

点M0对应参数x?2,故切向量为

x??1,0,1?. s切??1,0,?|??x?22??所以,点M0?2,4,5?处的切线方程为

x?2y?4z?5. ???101??x2?y2?x?(二)因为fx??2,4????x|?4?(2,4)2|?2,4??1,所以切线对于x轴的倾角的度

?? 数为??arctan1?. 44.求下列函数的所有二阶偏导数.

(1)z?sin?2x?3y?; (2)z?x4?4x2y2?y4; (3)z?2xy; (4)z?x2arctan【解】 (1)

?z?z?3cos?2x?3y?; ?2cos?2x?3y?; ?y?xyx?y2arctan. xy??2z?2z?2z??6sin?2x?3y?;2??9sin?2x?3y?. ??4sin?2x?3y?;

?x?y?x2?y(2)

?z?z??8x2y?4y3; ?4x3?8xy2; ?y?x?2z?2z?2z22??16xy;2??8x2?12y2. ?12x?8y; 2?x?y?x?y(3)

111?z11?.?2y???.?2xy?x?22xy?x22xy2y; xx. y

111?z11?.?2x???.?2xy?y?22xy?y22xy2????2z1?11y2y?????.???; ??22?x2?2y?x??4xxy??x??????2z1?1112???; ?.?????x?y2?2y?x??4xy??x???????2z1?11?x??2x??. ?.???22?????y22x?y?4yxy??y????(4)z?x2arctanyx?y2arctan. xy?????z?2y?x??xarctan?x?y2?arctan? ??x ?x?x?y??????????????y111???y???2??x2?.??y. ??2xarctan ??22??2???xyx??y??x??1???1??????????????????x???????y??yx2yy3 ?2xarctan ?2?222xx?yx?yyyx2?y2y ?2xarctan?2xarctan?y; ?2xxx?y2?????zyx??2?x2?arctan?y??yarctan? y ???yx?y???????????????????x???11??x12?2 ?x.??2yarctan?y?.??2?22???? ??y?x?yy?????x???1???????1???y???????x?????????x3xxy2 ?2 ?2yarctan?222yx?yx?y?x ?x?y2xx?x?2yarctan. ?2yarctan22yyx?y2???????2z?yy1y??? 2??2xarctan?y?x?2arctan?2x?.?2?? 2???y??x??xx?x???1????x??????y2xy ?2arctan?2. 2xx?y??????2z?y11???? ??2xarctan?y?y?2x?.?1 2?????x?y?x??y??x??1????????x??2x2x2?y2 ?2; ?1?222x?yx?y?2z?x?2yarctan 2????y??x??y ?y??????????x???x1????2? ?0??2arctan?2y?.? 2???yx??y?????1????y????????????x2xy ??2arctan?2. 2yx?y 5.验证下列等式.

(1)设z?xe,证明: xyx?z?z?y?z; ?x?y1?2u?2u?2u222(2)证明函数u?,r?x?y?z满足2?2?2?0;

r?x?y?z(3)证明T?x,t??e任意常数.

【证】

?ab2t?T?2T?a2,其中a为正常数,b为sinbx满足热传导方程?t?xyyyyy?????zyy?z1???????ex?x?ex??2???ex?1??;?x?ex????ex. (1)因?xx??y???x????x??

郑州大学高等数学下课后习题答案解析

无穷小量】.xy24.证明极限lim不存在.?x,y???0,0?x2?y4【证】(一)让动点P?x,y?沿直线y?0趋于点O?0,0?时,x.02xy2?lim2?0.lim2x?0x?04x??0?x?y4y?0(二)让动点P?x,y?沿抛物线y2?x趋于点O?0,0?时,xy2x.x1
推荐度:
点击下载文档文档为doc格式
014z55vxc885bn78arf2570pk9t82300b5j
领取福利

微信扫码领取福利

微信扫码分享