【解析】
?z?f1??exsiny?f2??6xy?exsinyf1??6xyf2?,?x?z?f1??excosy?f2??3x2?excosyf1??3x2f2?, ?y故dz?
?z?zdx?dy?(exsinyf1??6xyf2?)dx?(excosyf1??3x2f2?)dy. ?x?y51. 计算??x2dxdy,其中D:1?x2?y2?4.
D【答案】
15? 4【解析】积分区域D在极坐标系下为?(r,?)0???2?,1?r?2?,故
I??d??r2cos2??rdr?012?2152?152?15?1?2cos?d??(1?cos2?)d????sin2???4?08?08?2?2?0?15?. 4
52.将函数f(x)??2x展开成x的幂级数,并写出其收敛区间. 4?x2?1?(?1)n?n?1【答案】f(x)???n?2?x,x?(?2,2).
2n?0???2xx?11?xx1n【解析】,又?????x,x?(?1,1), ???x?1?xn?04?x22?2?x2?x??x??4?1??4?1???2??2??1?x??x??????,x?(?2,2), ????,从而
xn?0?2?xn?0?2?1?1?221?nn??1?(?1)n?n?1x??x?x??x?故f(x)????????????n?2?x,x?(?2,2).
4n?0?2?4n?0?2?2n?0??nn
53.求微分方程x2dy?(y?2xy?x2)dx?0的通解. 【答案】y?Cxe?x2 【解析】方程可化为y??代入公式得通解为 y?e??P(x)dx11111?Q(x)e?P(x)dxdx?C??x2ex?1e?xdx?C??x2ex?ex?C??Cx2ex?x2.
??2?????????x???21x1?2x1?2x,这是一阶线性非齐次微分方程,,Q(x)?1,y?1P(x)?x2x2五、应用题 (每小题7 分,共 14 分)
54.某工厂建一排污无盖的长方体,其体积V,底面每平米造价为a(元),侧面每平米造
价为b(元).为使其造价最低,其长、宽、高各应为多少米? 【答案】
【解析】设长方体的长、宽分别为x,y,则高为z?axy?2b(x?y)V,又设造价为z,由题意可得 xyV2bV2bV?z2bV?z2bV,而?ay?2,?ax?2, ?axy??xyyx?yy?xx令
?z2bV?z, ?0,?0,得唯一驻点x?y?3a?y?x3由题意可知造价一定在内部存在最小值,故x?y?2bV就是使造价最小的取值,此时高a22aVaV2bV2bV为32,故排污无盖的长方体的长、宽、高分别为3、3、32时,工程造价4b4baa最低.
55.平面图形D是由曲线y?ex,直线y?e及y轴所围成的,求: (1)平面图形D的面积;
(2)平面图形D绕y轴旋转一周所生成的旋转体的体积. 【答案】(1)1 (2)?(e?2)
【解析】(1)平面图形D的面积为S??(e?ex)dx?(ex?ex)10?1.
01(2)平面图形D绕y轴旋转一周所生成的旋转体的体积为
eeVy???(lny)2dy??(lny)2y1???2lnydy??e?2?ylny1?2??dy??(e?2).
111eee
五、证明题 (6 分)
56.设f?(x)在?a,b?上连续,存在m,M两个常数,且满足a?x1?x2?b,证明: m(x2?x1)?f(x2)?f(x1)?M(x2?x1).
【解析】f?(x)在?a,b?上连续,根据闭区间上连续函数的最值定理可知,f?(x)在?a,b?上既
有最大值又有最小值,即x?(a,b)时有m?f?(x)?M.
又因f?(x)在?x1,x2?上有意义,从而f(x)在?x1,x2?上连续且可导,即f(x)在?x1,x2?上,满足拉格朗日中值定理,即存在??(x1,x2)使得
f(x2)?f(x1)?f?(?),而m?f?(?)?M,
x2?x1故恒有m(x2?x1)?f(x2)?f(x1)?M(x2?x1).