1A.?
3n?1n?2?1B.?
nlnnn?2?1C.? 2n(lnn)n?2?D.?n?2?1nnn
【答案】C 【解析】???2??11发散,dx收敛,由积分判别法知B发散,C收敛;其余几dx2?2x(lnx)xlnx个级数均与级数具有相同的发散性.故选C.
23.幂级数?
1(x?1)n的收敛区间为( ) n?1n?03?A.(?1,1) B.(?3,3) C.(?2,4) D.(?4,2)
【答案】D
1n1??t?【解析】令x?1?t,级数化为?n?1t????,级数收敛区间为(?3,3),即x?1?(?3,3),
333n?0n?0???n故x?(?4,2),选D.
24.微分方程y???3y??2y?e?xcosx利用待定系数求特解时,设y*?( )
A.Cexcosx
B.e?x(C1cosx?C2sinx) D.x2e?x(C1cosx?C2sinx)
C.xe?x(C1cosx?C2sinx)
【答案】B
【解析】特征方程为r2?3r?2?0,特征根为r1??1,r2??2,而?1?i不是特征方程的特征根,特解应设为y*?e?x(C1cosx?C2sinx).
25.函数y?f(x)满足微分方程y???y??e2x,且f?(x0)?0,则f(x)在x0处( )
A.有极小值
B.有极大值
C.无极值
D.有最大值
【答案】A
【解析】f??(x0)?f?(x0)?e2x0?f??(x0)?e2x0?0,故选A.
二、填空题 (每小题 2分,共 30分)
26.设f(x)?2x?5,则f?f(x)?1??________. 【答案】4x?13
【解析】f?f(x)?1??2?f(x)?1??5?2f(x)?3?2(2x?5)?3?4x?13.
2n27.lim?________.
n??n!【答案】0
2n【解析】构造级数?,利用比值判别法知它是收敛的,根据收敛级数的必要条件可得
n?0n!?2nlim?0. n??n!
?3e4x,x?0?28.设函数f(x)??在x?0处连续,则a?________. a2x?,x?0??2【答案】6
【解析】limf(x)?f(x)?3,lim??x?0x?0aa,由题意可知?3,故a?6. 22
29.曲线y?x2?x?2在点M处的切线平行于直线y?5x?1,则点M的坐标为 ________. 【答案】(2,4)
【解析】y??2x?1?5,从而x?2,y?4,故点M坐标为(2,4).
30.已知f(x)?e2x?1,则f(2007)(0)?________. 【答案】22007e?1
【解析】f(n)(x)?2ne2x?1,故f(2007)(0)?22007e?1.
?x?3t?1dy31.曲线?,则|t?1?________. 2dx?y?2t?t?1【答案】1
【解析】
dy4t?1??1. ||t?1t?1dx332.若函数f(x)?ax2?bx在x?1处取得极值2,则a?________,b?________. 【答案】?2,4
【解析】f(1)?a?b?2,f?(1)?2a?b?0,联立解得a??2,b?4. 33.?f?(x)dx? ________. f(x)【答案】lnf(x)?C 【解析】?
34.?1?x2dx?________.
01f?(x)df(x)dx???lnf(x)?C. f(x)f(x)【答案】
? 411?【解析】?1?x2dx???12?.
044
35.向量3i?4j?k的模a?________. 【答案】26 【解析】a?32?42?(?1)2?26.
36.平面?1:x?2y?5z?7?0与平面?2:4x?3y?mz?13?0垂直,则m?________. 【答案】2
【解析】n1?(1,2,?5),n2?(4,3,m),n1?n2?4?6?5m?0?m?2.
37.函数f(x?y,xy)?x2?y2,则f(x,y)?________. 【答案】x2?2y
【解析】f(x?y,xy)?x2?y2?(x?y)2?2xy?f(x,y)?x2?2y.
38.二次积分I??【答案】?22x220dy?1?y2yf(x,y)dx交换积分次序后为________.
11?x20dx?f(x,y)dy??2dx?020f(x,y)dy
??2??【解析】D??(x,y)0?y?,y?x?1?y2?
2???????22????2???(x,y)0?x?,0?y?x???(x,y)?x?1,0?y?1?x?, 22????????故积分次序交换后为?
220dx?f(x,y)dy??2dx?02x11?x20f(x,y)dy.
??11?139.若级数?收敛,则级数????的和为________.
un?1?n?1?unn?1un?【答案】
1 u1?11??11?【解析】Sn??????????u1u2??u2u3?而lim
1un?1n???11?11?????, ?uuuun?1?1n?1?n?0,故S?limSn?n??1. u140.微分方程y???2y??y?0的通解为________. 【答案】y?C1ex?C2xex(C1,C2为任意常数)
【解析】特征方程为r2?2r?1?0,特征根为r1?r2?1,故通解为y?C1ex?C2xex(C1,C2为任意常数).
四、计算题(每小题5 分,共40 分) 46.计算limxsinx. ?x?0【答案】1
【解析】limx?x?0sinx?lime?x?0sinxlnx?ex?0?limsinxlnx?ex?0?limxlnxx?0?lim?elnx1x?e?limxx?0??e0?1.
47.已知y?x231?xdy,求. 1?xdx?211????x3(x?1)3(x?1)? ??【答案】x231?x1?x【解析】两边取自然对数得lny?2lnx?1?ln1?x?ln1?x?, 3两边对x求导得
y?21??11??????, yx3?1?x1?x??211????x3(x?1)3(x?1)?. ??故
dy1?x?x23dx1?x
2x48.求 ???e?ln(1?x)??dx.
1【答案】e2x?(1?x)ln(1?x)?x?C
22x【解析】??e??ln(1?x)??dx?12x12xxed(2x)?ln(1?x)dx?e?xln(1?x)???1?xdx 2?211?12x??e2x?xln(1?x)???1??dx?e?(1?x)ln(1?x)?x?C. 22?1?x? 49.计算??02?2cos2xdx.
【答案】4 【解析】??02?2cos2xdx???04cosxdx?2?cosxdx?2?2cosxdx?2??cosxdx
0022?????2sinx20?2sinx??2?4.
50.设z?f(exsiny,3x2y),且f(u,v)是可微函数,求dz. 【答案】(exsinyf1??6xyf2?)dx?(excosyf1??3x2f2?)dy