.. . .. . .
多元函数微分学及其应用 填空题
1. 若Z?exy?yx2,则?Z?xexy?x2
?y2. 已知f(x,y)=ex2y,则f(x,y)?2xye'xx2y
二元函数Z?xexy全微分dZ?exy(1?xy)dx?x2exydy ;
3. 二元函数Z?exy全微分dZx?1,y?0?dy
选择题
1. 设函数z?ln(xy),则 (A)
?z 等于( C ) ?x1x1y (B) (C) (D) yyxx?Z等于( D ) ?x2. 设Z?sin(xy2),则
(A)xycos(xy2) (B)?xycos(xy2) (C) ?y2cos(xy2) (D) y2cos(xy2) 3. 设 Z?3xy,则
?Z= ( D ) ?x(A)y3xy (B)3xyln3 (C)xy3xy?1 (D) y3xyln3 计算与应用题
1. 设 Z?Z(x,y)由方程eZ?x2y?lnZ?0确定,求dZ 解:令F(x,y,Z)?eZ?x2y?lnZ?0
?F?F?F1?x2 ?2xy ?eZ? ?y?x?ZZFy'Fx'?Z?x2x2Z?Z?2xy?2xyZ??'????'?? , ?yFZeZ?1ZeZ?1?xFZeZ?1ZeZ?1ZZ?2xyZ?x2ZdZ?Zdx?Zdy
Ze?1Ze?1S. . . . . ..
.. . .. . .
2. 设Z?xln(x?y),求?2Z?2Z?x2,?x?y 解:?2Z?Zx1x?y?xx?2y?x2??x[ln(x?y)?x?y]?x?y?(x?y)2?(x?y)2 ?2Z?Zx1x?x?y??y[ln(x?y)?x?y]?x?y?(x?y)2?y(x?y)2 3. 设 Z?lnx2?y2,求偏导数 解:
?Z1?x?x2?y2?2x2x2?y2?xx2?y2
?Z1y?y?x2?y2?2y2x2?y2?x2?y2 4计算二重积分
??(x?6y)dxdy,其中D是由y?x,y?5x,x?1 D所围成的区域。
解:??(x?6y15xy)dxdy??0dx?x(x?6y)dy
y?5xDy?x??176x2760dx?3x31?7603 01x
5.求积分?1?y0dy?103xy2dx
解:
?10dy?1?y3xy2dx??1333100(2y2?2y3)dy?2(3y3?14y4)110?8 S. . . . . ..
.. . .. . .
6. 计算二重积分??(x?y)d?, 其中D由曲线y?x2,x?1,x轴围成
D
yy?x2 解:??(x?y)d???dx?D01x2o(x?y)dy
1117 ??(x3?x4)dx?(x4?x5)1 ?00241020101x
S. . . . . ..