(7)limn(na?1);
n?? (8) limln(a?x)?ln(a?x)?2lna 2x?0x
3. 已知 limx?01?f(x)sin2x?1?2, 求 limf(x) 3xx?0e?1
4比较下列各组无穷小:
(1) 当x?1时,
(2) 当x?0时,(1?cosx)与sinx;
(3)当x?1时,无穷小1?x是1?3x的几阶无穷小?
16
21?x与1?x; 1?x2第一章函数 极限 连续
§1函数
1. 解:(1) 要使sin4?x2有意义,必须4?x2?0,即使x?2.所以定义域为[-2,2]. (2)当x?3且x?1时,21有意义;而要使x?2有意义,必须x??2,故函数
x?4x?3的定义域为:[?2,1)、(1,3)、(3,??). (3)要使arccosln定义域为[xx1x10有意义,则使?1?ln?1,即??e.??x?10e,即 1010e10e10,10e]. e(4)要使tg(x?1)有意义,则必有x?1??2?k?,k?0,?1,?2,?.;即函数定义域为
????xx?R且x?k???1,k?0,?1,?2,??.
2??(5)当x?3时3?x有意义;又当x?0时arctg1故函数的定义域为: 有意义,x(??,0)、(0,3].
(6)当2k??x?(2k?1)?(k?0,?1,?2?)时sinx有意义;有要使16?x2有意义, 必须有?4?x?4.所以函数的定义域为:[?4,??]、[0,?]. 2. f(3)?2,f(2)?1,f(0)?2,f()?2,f(?)?23. 解:f[g(x)]?1212?12.
?x2?4x?3,因此要使?x2?4x?3有意义;必须1?x?3,
即f?g(x)?的定义域为[1,3]。
?1,??4.解f[g(x)]??0,????1,e?1,x?0,?1,?ex?1,??0,x?0, g[f(x)]?ef(x)?ex?1,??1,x?0;x??e,????1,?1?,??ex?1,x?1,。 x?1, 17
5.当0?sinx?1时f(sinx)有意义,故其定义域为[2k?,(2k?1)?](k?0,?1,?2?).。 6.f(x?1)???2x?1,x?1,2?x?2x?5,x?1;?2x?3,x??1, f(x?1)??2?x?2x?5,x??1;?2x2?10,x??1,?2故 f(x?1)?f(x?1)??x?8,?1?x?1,。
?4x?2,x?1.?7解:设f(x)?ax?bx?c,由f(x?1)?f(x)?8x?3?a(x?1)?b(x?1)?c?(ax
222?bx?c)?2ax?a?b,得2a?8,a?b?3,即a?4,b??1,?f(x)?4x2?x?c.
8.Qf??f??x????f???f?x?????f??f?x????f??f?x???为奇函数 Qg??f??x????g???f?x????g??f?x??? ?g??f?x???为偶函数
1?x21?x229.证:当x?1时,x?x,因此?1;当x?1时,?1?x?2;所以对任441?x1?x24意x?(??,??),f(x)?2,即f(x)有界。
10.解:(1)由y?ln(x?2)?1得ln(x?2)?y?1,即x?2?ey?1,x?ey?1?2.
?y?ln(x?2)?1的反函数为y?ex?1?2.
2xyyx得2x?,即x?log2,反函数为y?log2. (2)由y?x1?y1?y1?x2?1(3)当x?0时y?1;x?0时,y?0.反函数为:y??333?x?1,x?1,?x,x?0.
11.解:(1)y?u,u?sin(1?2x);y?u,u?sinv,v?1?2x. (2)y?10,u?(2x?1);y?10,u?v,v?2x?1;;
2xy?arctgu,u??tg(a?e)???;2u2u2(3)
18
x2y?arctgu,u?v,v?tg(a?e);y?arctgu,u?v,22v?tg(a2?w),w?ex.
12.设证圆锥的高为h,底半径为R,体积为V,由立体几何学知:V?又
利
用
两
212?Rh. 3可
得
:
直角三角形相似
r?R
r2h2r2h?r2h2,?R??,V?,h?(2r,??).
22h(h?2r)h?2r3(h?2r)R?hh?r§2 数列极限定义及性质
(?1)nn3,a?; (2)1. 解:(1)(错)例如xn?1?(对) (3)(对).
2n?122.(1)证:?2n?11551????
4n?322(4n?3)8nn12n?1112n?11?任给?〉0,取N?[],当n?N时,有????.由定义:lim?.
n??4n?3?4n?32n2(2)证:
n?1?n?1n1n?1?n?1n,?任给??0,取N?[1?2],当n?N时,
n?1?n???.?lim(n?1?n)?0.
n??3.证:?limxn?a,?任给??0,存在N?0,当n?N时,有xn?a??,又xn?a?
n??xn?a??(n?N时),?limxn?a.
n??4.证:?limxn存在,?存在M?0,有xn?M(n?1,2,?).又?nsinn??xnxnM??. 2nnn?任给??0,取N?[M?],当n?N时,有asinxnxnMlimnsin?0. ?0???,?n??n2nn2n??5.证:??xn?有界,?存在M?0,使得xn?M(n?1,2,?).又?limyn?0,
19
?任给??0,
存在N?0,当n?N时有yn?
?M,而xnyn?xnyn?M??M??.?limxnyn?0.
n??数列极限运算法则及存在准则
1.解:(1)(对)
111,yn?sinn,lim?0,limsinn不存在,但limsinn?0存在.
n??nn??n??nn1111(3)(错)例如:un?2,vn?,un?vn(n?1,2,?),但lim2?lim?0.
n??n?1n??nnn?1(2)(错)例如:xn?2.证:?limunvv11?v??a?0,?limn?lim?,??n?有界,而vn?n?un由数列极
n??vn??un??ua?un?unnnnvnn??限的定义及性质和上节习题5可知limvn?0。
21?234n3?2n?1nn?lim?2. 3.解:(1)limn??2n3?3n2?1n??312??3nn23n[(?)n?1]nn(?2)?313?lim?. (2)limn??(?2)n?1?3n?1n??n?12n?133[(?)?1]34? (3)limn(n?1?n?1)?limn??222nn?1?n?122n???lim2nn(1?11?1?)n2n2n???1
1?(2n?1)n1?3???(2n?1)2 (4)lim?lim?2 n??n??1?n1?2???nn2111111111 (5)lim(1?2)(1?2)?(1?2)?lim(1?)(1?)(1?)(1?)?(1?)(1?)
n??n??2233nn23n132435n?1n?11n?11?lim(???????)?lim(?)?. n??223344n??nn2n2 20