§5函数极限运算法则 姓名 学号 1.选择填空:
(1)limx2?2x?sinxx??2x2?sinx.( )
(A)不存在. (B)0. (C)2. (D)
12. 1x (2)设f(x)?e?1
2e?1,则limf(x)。( )x?1x?0 (A)?. (B)不存在. (C)0. (D)12.
(3)设f(x)????x,x?1,?x3,x?1,?3?x,x?1; g(x)??则limf?2x?1,x?1.?1?g(x)?。( )
x (A)?1. (B) 1 (C) 4. (D) 不存在.
lim(1?a)x4(4)?bx3?2x??x3?x2?1??2, 则 a,b的值分别为 ( ) ( A)a=- 3 ,b=0 (B)a=0,b=- 2, (C)a= -1,b=0, (D) a= -1,b= -2
(5) 变量f(x)?x2?1(x?1)x2?1在( )的变化过程中是无穷小量。
(A) x?1 (B) x??1 (C) x?0 (D)x??
2. 求下列各式的极限:
(1)lim(3x?1)70(8x?1)30x3x2x??(5x?2)100; (2)lim(?); x??2x2?12x?1
(3)xlimx???; (4)limx?sinx;
x?x?xx??x?cosx
11
2x2?x?1(5)limx(x?1?x); (6)lim;
x???x?1x?12
312x?1(7)lim(; (8); ?)limt?11?tx?11?t2x?1
x3?ax2?x?43. 设lim 有极限值 m, 试求 a及 m 的值
x??1x?1
1?xsin,???x?0,?x??24.讨论limf(x)的存在性,其中f(x)??x?2x?1,0?x?1,且x0?0,1。
x?x0?x2?1?,1?x???;??x?1
12
§6极限存在准则 两个重要极限 姓名 学号
1.求下列极限 (1)lim(1n??n?1?1n?2???1n?n);
(2)lim1nn(n2???1??n2?2????1n2?n?);
(3)limn2?(?1)nn??2n;
(4)limxsin1x??x;
(5)lim(1?x)?xx?1sec2;
13
(6)lim(1?3tgx)x?02ctg2x;
(7)lim(x??x?1x?2); x?3
x2x) (8)lim(2x??x?1 (9)limx?01?tanx?1?sinx 3x
(10). limx?sinln(1?)?sinln(1?)?
x??xx
14
??31??1.
§7无穷小的比较 姓名 学号
当x?0时判断下列各无穷小对无穷小x的阶
2312(1)x?sinx; (2)x?x;
(3)3x?3x3?x5;
2.利用等价无穷小代换,求下列各极限:
(1)lim1?cos2x; x?0xsinx
(3)lim1?cos3xx?0xsin2x;
(5)lime2x?1x?0ln(x?1);
(4)tgx?sinx; 3sinx?x2cos12)limxx?0(1?cosx)ln(1?x) 4)lim1x?0(sinx?1tgx), 36)lim1?x2?1x?0x2; 15
(((