摘要
小波变换是一种新型的数学分析工具,是80年代后期迅速发展起来的新兴学科。小波变换具有多分辨率的特点,在时域和频域都具有表征信号局部特征能力,适合分析非平稳信号,可以由粗及精地逐步观察信号。小波分析的理论和方法在信号处理、图像处理、语音处理、模式识别、量子物理等领域得到越来越广泛的应用,它被认为是近年来在工具及方法上的重大突破。
信号的采集与传输过程中,不可避免会受到大量噪声信号的干扰,对信号进行去噪,提取出原始信号是一个重要的课题。那么究竟应该如何从含噪声的信号中提取出原始的信号,这就成了最重要的问题。经过长期的探索与努力、实验仿真,对比于加窗傅里叶对信号去噪,提取原始信号的方法,终于找到了一种全新的信号处理方法——小波分析。它将信号中各种不同的频率成分分解到互不重叠的频带上,为信号滤波、信噪分离和特征提取提供了有效途径,特别在信号去噪方面显出了独特的优势。
本文从小波变换的定义和信号与噪声的不同特性出发,在对比分析了各种去噪方法的优缺点基础上,运用了对小波分解系数进行阈值化的方法来对一维信号去噪,该方法对去除一维平稳信号含有的白噪声有非常满意的效果,具有有效性和通用性,能提高信号的信噪比。与此同时,本文还补充介绍了强制消噪处理、默认阈值处理、给定软阈值处理等对信号消噪的方法。在对含噪信号运用阈值进行消噪的过程中,对比了用不同分解层数进行处理的去噪效果。
本文采用的是用传感器采集的微弱生物信号。生物信号通常是噪声背景小的低频信号,而噪声信号通常集中在信号的高频部分。因此,应用小波分解,把信号分解成不同频率的波形信号,并对高频波进行相关的处理,处理后的高频信号在和分离出的低频信号进行重构,竟而,就得到了含少量噪声的原始信号。而且,随着分解层数的不同,小波去噪的效果也是不同的。并对此进行了深入的分析。
关键词:小波变换;声信号;默认阈值处理;降噪小波重构
河南农业大学理学院本科毕业论文
The signal denoising based on wavelet transform
QING Xue-zhen
Abstract
Wavelet transform is a new-style mathematic analysis tool. Itis a new subjectwhich was rapidly developed inlate 1980s. The wavelet transform has the characteristicof multi-analysis and the ability to analyse partial characteristic both in the time domainand the frequency range, so it is suitable to analyze non-steady state signal and observesignal gradually from coarse to fine. The method has been used in many domains suchas signal processing, image processing, pronunciation distinction, pattern recognition,quantum physics and so on. It is considered as a great breakthrough of tools andmethods recently.
It is inevitable to be interfered by a large amount of noise signal in the process of signal gathering and transmission. It’s a main topic to deniose and extract originalsignal.How should contain the noise signal from the original signal, which became a most important problem. After a long period of exploration and efforts, experimental simulation, compared to add window Fourier to signal denoising, extraction method of original signal, finally found a new signal processing method, wavelet analysis. It will signal in different frequency components of the decomposition into non-overlapping band, signal-to-noise ratio (SNR) for signal filtering, feature extraction separation and provides effective ways, especially in the aspect of signal denoising show a unique advantage.
This article from the definition of wavelet transform and the different characteristics of signal and noise, the comparison and analysis the advantages and disadvantages of various denoising method, based on the use of the wavelet decomposition coefficient method for one-dimensional signal threshold denoising, the method for denoising the white noise of one dimensional steady signal contains a very satisfactory results, with the effectiveness and generality, can improve the SNR of signal. At the same time, this paper adds the compulsory treatment, the default threshold denoising, given the soft threshold processing method for signal de-noising. On noise signal using the threshold de-noising, compared with different decomposition layers for processing the denoising effect.
This article USES the sensor with a weak biological signal acquisition. Biological signal is usually low frequency signal of background noise, the noise signal is usually focused on the high
河南农业大学理学院本科毕业论文
frequency part of signal. Wavelet decomposition, therefore, the signal is decomposed into different frequency waveform signal, and the high frequency wave are related to processing, processing of high frequency signal in low frequency signal and isolated refactoring, unexpectedly and, get the original signal containing a small amount of noise. And as the number of decomposition layers, wavelet denoising effects are also different. And carried on the thorough analysis.
Key words: wavelet transform; pronunciation signal; The default threshold processing;wavelet reconstruction