依题意,得:40×1+1m≤5000, 解得:m≤
.
∵m为整数, ∴m的最大值为2.
答:购进1本文学书后最多还能购进2本科普书. 【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 26.(1)S=﹣3x1+14x,【解析】 【分析】
(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;
(1)根据(1)所求的关系式把S=2代入即可求出x,即AB; (3)根据二次函数的性质及x的取值范围求出即可. 【详解】
解:(1)根据题意,得S=x(14﹣3x), 即所求的函数解析式为:S=﹣3x1+14x, 又∵0<14﹣3x≤10, ∴
14≤x< 8;(1) 5m;(3)46.67m1 314?x<8; 3(1)根据题意,设花圃宽AB为xm,则长为(14-3x), ∴﹣3x1+14x=2. 整理,得x1﹣8x+15=0, 解得x=3或5,
当x=3时,长=14﹣9=15>10不成立, 当x=5时,长=14﹣15=9<10成立, ∴AB长为5m;
(3)S=14x﹣3x1=﹣3(x﹣4)1+48 ∵墙的最大可用长度为10m,0≤14﹣3x≤10, ∴
14?x<8, 3∵对称轴x=4,开口向下,
∴当x=
14m,有最大面积的花圃. 3【点睛】
二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.
27.(1)证明见解析;(2)9【解析】
试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD(2)、得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案. 试题解析:(1)如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB, ∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC, 在△COD和△COA中,
∴CF⊥OD, ∴CF是⊙O的切线.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°, ∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB, ∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
﹣3π
∴AC=OA?tan60°=3
, ∴S阴=2?S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
Administrator A d m i n i s t r a t o r