答案:C 解析:
6答案及解析: 答案:C
解析:由题设可知a1数”的定义.
7答案及解析: 答案:B 解析:
8答案及解析: 答案:A 解析:
1?24?15 4a1?4,2a2?2q,a3?q,∴2q?2?4?q?q?2,S4?1?2
9答案及解析: 答案:D 解析:
10答案及解析:
22?0,an?a1qn?1,分别代入①②③④,可知只有①③满足“保等比数列函
答案:D 解析:
11答案及解析: 答案:D
解析:根据题意可设数列an?2bn ,所以
??an?1?2bn?1?an?2bn?2an?1?2an?1?2 因为a1
所以an?2bn是以1?
????2bn?1?2???an?2bn,
??b1?1所以a1?2b1?1?2 ??2为首项, 1?2为公比的等比数列,
故an?2bn?1?2 又公比为1?
??,所以AB不正确,
n2,其绝对值小于1,所以
?a?n2bn递减,所以排除C
?an1?2??an?2bn,易知数列?an?,?bn?为递增数列, bnbn 故??1??b?递减, an?2bn递减,故选D n?
12答案及解析: 答案:D
解析:∵a2n?an?1?an?1?2an,an?0,an?2,
∴Sn?2n,
∴S2016?2?2016?4032.
13答案及解析: 答案:101 解析:
14答案及解析:
答案:1306 解析:
15答案及解析: 答案:④ 解析:
16答案及解析: 答案:3?22
解析:∵a11,2a,2a2成等差数列 ∴
解得
考点:本题考查数列性质应用
点评:解决本题的关键是利用性质解题,要注意公比大于0
17答案及解析: 答案:0
解析:∵a,b,c成等差数列,设公差为d,则
(b?c)logmx?(c?a)logmy?(a?b)logmz?dlogmx?2dlogmy?dlogmzy2?dlogm?dlogm1?0
xz
18答案及解析: 答案:4 解析:
19答案及解析:
??a1?4d?10,答案:(1).依题意得? 2???a1?2d??a1?a1?8d?,因为d?0,解得??a1?2, d?2.?所以an?2??n?1??2?2n. (2).由(1)得Sn?n?2?2n??n2?n,
2所以1?21?1?1.
Snn?nnn?1????1??11?1?1n?1所以Tn??. ??1???????…?????1?223nn?1n?1n?1??解析:
20答案及解析: 答案:(1)当q?2,n?3时,
M??0,1?,
A??x|x?x1?x2?2?x3?22,xi?M,i?1,2,3?,
可得A??0,1,2,3,4,5,6,7?. (2)证明:由s,t?A,
s?a1?a2q??anqn?1,
t?b1?b2q??bnqn?1,
ai,bi?M,i?1,2,,n ,及an?bn,
可得
s?t?(a1?b1)?(a2?b2)q??(an?1?bn?1)qn?2?(an?bn)qn?1n?2?(q?1)?(q?1)q??(q?1)?q?qn?1(q?1)(1?qn?1)??qn?1??1?0
1?q所以s?t. 解析:
21答案及解析:
答案:(1)由2Sn?3an?1①
①-②,得2an?3an?3an?1,∴an?3(n?2),
an?1又2S1?3a1?1,2S2?3a2?1,∴a1?1,a2?3,a2?3, a1∴{an}是首项为1,公比为3的等比数列,∴an?3n?1. (2)由1得, bn?∴Tn?n, 3n?1123n③ ???...?012n?13333112n?1nTn?1?2?...?n?1?n④ 33333121111n3n?n?3?2n?3?③-④得, Tn?0?1?2?...?n?1?n,
13n22?3n3333331?31?∴Tn?96n?9. ?44?3n解析:
22答案及解析:
1S1?1,解得a1?2,当n?2时, 211an?1?Sn?1?1……①, an?Sn?1……②,
221②-①得an?an?1?an,即an?2an?1
2答案:1.当n?1时, a1?
∴数列2.
?an?是以2为首项,2为公比的等比数列, ?an?2n
1111,
???bnbn?1n(n?1)nn?1bn?log2an?log22n?n,cn?Tn?1?11111111, ?????...???1?22334nn?1n?1????1?1?1?∵n?N*,?1????0,?. ?0,?,?n?12n?12解析: