精品文档
?????ΣF外= m1a1 + m2a2 + m3a3 + … + mnan
?其中ΣF外只能是系统外力的矢量和,等式右边也是矢量相加。
1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?
解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。
F答案:N = x 。
L思考:如果水平面粗糙,结论又如何? 解:分两种情况,(1)能拉动;(2)不能拉动。
第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。
l第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μ
LMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。
答:若棒仍能被拉动,结论不变。
l若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于
LFL的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N = 〔x -l〈L-l〉〕。
应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ; C、μ1 m2gcosθ ; D、μ1 m2gcosθ ; 解:略。 答:B 。(方向沿斜面向上。) 思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?
解:略。 答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。
2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?
精品文档
精品文档
解说:此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。
答案:F =
(m1?m2?m3)m2g 。
m1思考:若将质量为m3物体右边挖成
凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。
解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:
T2?(m2g)2 = m2a 隔离m1 ,仍有:T = m1a 解以上两式,可得:a =
m2m?m2122g
最后用整体法解F即可。
答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′=
(m1?m2?m3)m2gm?m2122 。
3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?
解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。
法二,“新整体法”。
?????据ΣF外= m1a1 + m2a2 + m3a3 + … + mnan ,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1 解棒的加速度a1十分容易。
M?m答案:g 。
M四、特殊的连接体
当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。
精品文档
精品文档
解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、
1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。
解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。
(学生活动)定型判断斜面的运动情况、滑块的运动情况。
位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。
(学生活动)这两个加速度矢量有什么关系? 沿斜面方向、垂直斜面方向建x 、y坐标,可得: a1y = a2y ①
且:a1y = a2sinθ ②
隔离滑块和斜面,受力图如图20所示。
对滑块,列y方向隔离方程,有:
mgcosθ- N = ma1y ③
对斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④ 解①②③④式即可得a2 。
msin?cos?答案:a2 = g 。
M?msin2?(学生活动)思考:如何求a1的值?
解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向
22的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 = a1x?a1y求a1 。
gsin?M2?m(m?2M)sin2? 。 2M?msin?2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。
答:a1 =
精品文档
精品文档
解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。
(学生活动)思考:为什么题
意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)
定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:
S1x + b = S cosθ ①
设全程时间为t ,则有:
1S = at2
2②
1S1x = a1xt2
2③
而隔离滑套,受力图如图23所示,显然:
mgsinθ= ma1x ④ 解①②③④式即可。
答案:t =
2b
acos??gsin???*?*?另解:如果引进动力学在非惯性系中的修正式 ΣF外+ F = m a(注:F为惯性力),此题极简单。过程如下——
以棒为参照,隔离滑套,分析受力,如图24所示。 注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:
F*cosθ- mgsinθ= ma相 (1) 其中F* = ma (2)
而且,以棒为参照,滑套的相对位移S相就是b ,即:
精品文档
精品文档
12
a相 t (3) 2解(1)(2)(3)式就可以了。
b = S相 =
第二讲 配套例题选讲
教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。
例题选讲针对“教材”第三章的部分例题和习题。
第三部分 运动学
第一讲 基本知识介绍
一. 基本概念 1. 质点 2. 参照物 3. 参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)
4.绝对运动,相对运动,牵连运动:v绝=v相+v牵 二.运动的描述 1.位置:r=r(t)
2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数
4.加速度a=an+aτ。an:法向加速度,速度方向的改变率,且an=v2/ρ,ρ叫做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)aτ: 切向加速度,速度大小的改变率。a=dv/dt
5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)
6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好
三.等加速运动
v(t)=v0+at r(t)=r0+v0t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包
精品文档
高中物理竞赛讲义(完整版)培训讲学



