精品文档
静力学的知识,本题在于区分两种摩擦的不同判据。 水平方向合力为零,得:支持力N持续增大。
物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。
对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。
答案:B 。
3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。
解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。
分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。
(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:
FAB? ⑴ GR由胡克定律:F = k(AB- R) ⑵ 几何关系:AB= 2Rcosθ ⑶ 解以上三式即可。 答案:arccos
kL 。
2(kR?G)(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?
答:变小;不变。
(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?
解:和上题完全相同。 答:T变小,N不变。
精品文档
精品文档
4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。
解说:练习三力共点的应用。
根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。
答案:
3R 。 3(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?
解:三力共点知识应用。
a答:ctg? 。
b4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2 ,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1 : m2为多少?
解说:本题考查正弦定理、或力矩平衡解静力学问题。
对两球进行受力分析,并进行矢量平移,如图16所示。
首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。
而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。
对左边的矢量三角形用正弦定理,有:
m1gsin? =
F sin45?①
同理,对右边的矢量三角形,有:②
解①②两式即可。
精品文档
m2gF = sin?sin30?精品文档
答案:1 :2 。
(学生活动)思考:解本题是否还有其它的方法?
答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。
应用:若原题中绳长不等,而是l1 :l2 = 3 :2 ,其它条件不变,m1与m2
的比值又将是多少?
解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。
答:2 :32 。
5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?
解说:这是一个典型的力矩平衡的例题。 以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f ,支持力为N ,重力为G ,力矩平衡方程为:
f R + N(R + L)= G(R + L) ①
球和板已相对滑动,故:f = μN ②
解①②可得:f =
?G(R?L)
R?L??R再看木板的平衡,F = f 。
同理,木板插进去时,球体和木板之间的摩擦f′=
R?L??RF 。
R?L??R?G(R?L) = F′。
R?L??R答案:
第四讲 摩擦角及其它
一、摩擦角
1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。
2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。 此时,要么物体已经滑动,必有:φm = arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms = arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm = φms 。
精品文档
精品文档
3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。 二、隔离法与整体法
1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。
在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。 2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。
应用整体法时应注意“系统”、“内力”和“外力”的涵义。 三、应用
1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。
解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。
法一,正交分解。(学生分析受力→列方程→得结果。)
法二,用摩擦角解题。 引进全反力R ,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。
再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm = 15°。
最后,μ= tgφm 。 答案:0.268 。
(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?
解:见图18,右图中虚线的长度即Fmin ,所以,Fmin = Gsinφm 。 答:Gsin15°(其中G为物体的重量)。
2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2 ,求地面对斜面体的摩擦力大小。
解说:本题旨在显示整体法的解题的优越性。
法一,隔离法。简要介绍…… 法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。
做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平
精品文档
精品文档
衡方程很容易解地面摩擦力。
答案:26.0N 。
(学生活动)地面给斜面体的支持力是多少? 解:略。 答:135N 。
应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。
解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。
法一:隔离法。
由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ
对第二个物理情景,分别隔离滑块和斜
面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy ,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。
对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ Fy + mgcosθ= N 且 f = μN = Ntgθ 综合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
对斜面体,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化简得:Fy = mgcosθ ② ②代入①可得:Fx = 3mgsinθ
最后由F =Fx2?Fy2解F的大小,由tgα= 面的夹角)。
FyFx解F的方向(设α为F和斜
1答案:大小为F = mg1?8sin2?,方向和斜面夹角α= arctg(ctg?)指向
3斜面内部。
法二:引入摩擦角和整体法观念。
仍然沿用“法一”中关于F的方向设置(见图21中的α角)。
先看整体的水平方向平衡,有:Fcos(θ- α) = P
精品文档