线面垂直的判定和性质定理(习题课)
A组 1 C 2 B 3 D 4 D 5 C 6 ③ 7 ①② 8 a或2a 106
9 (2) d=5. 10 (2) V=3 (3) 4 433
B组 1 D 2 ①②③ 3 (2) 3 (3) 2
A组 基础训练
一、选择题
1.已知平面α与平面β相交,直线m⊥α,则( ) A.β内必存在直线与m平行,且存在直线与m垂直 B.β内不一定存在直线与m平行,不一定存在直线与m垂直 C.β内不一定存在直线与m平行,但必存在直线与m垂直 D.β内必存在直线与m平行,不一定存在直线与m垂直
【解析】 如图,在平面β内的直线若与α,β的交线a平行,则有m与之垂直.但却不一定在β内有与m平行的直线,只有当α⊥β时才存在.
【答案】 C
2.已知两个平面垂直,下列命题:
①一个平面内已知直线必垂直于另一个平面内的任意一条直线. ②一个平面内的已知直线必垂直于另一个平面的无数条直线. ③一个平面内的任一条直线必垂直于另一个平面.
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确命题的个数是( )
A.3 B.2 C.1 D.0
【解析】 根据面面垂直的性质定理知,命题④正确;两平面垂直,一个平面内的已知直线必垂直于另一个平面内与交线垂直的直线,故命题②正确,命题①③错误.
【答案】 B
3.(2013·广东高考)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
A.若α⊥β,m?α,n?β,则m⊥n B.若α∥β,m?α,n?β,则m∥n C.若m⊥n,m?α,n?β,则α⊥β D.若m⊥α,m∥n,n∥β,则α⊥β
【解析】 如图,在长方体ABCD-A1B1C1D1中,平面BCC1B1⊥平面ABCD,BC1?平面BCC1B1,BC?平面ABCD,而BC1不垂直于BC,故A错误.
平面A1B1C1D1∥平面ABCD,B1D1?平面A1B1C1D1,AC?平面ABCD,但B1D1和AC不平行,故B错误.
AB⊥A1D1,AB?平面ABCD,A1D1?平面A1B1C1D1,但平面A1B1C1D1∥平面ABCD,故C错误.故选D.
【答案】 D
图7-5-10
4.(2014·大连模拟)如图7-5-10,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( )
A.AC⊥SB B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角 D.AB与SC所成的角等于DC与SA所成的角 【解析】 ∵四边形ABCD是正方形,∴AC⊥BD. 又∵SD⊥底面ABCD,∴SD⊥AC.
其中SD∩BD=D,∴AC⊥面SDB,从而AC⊥SB.故A正确;易知B正确;设AC与DB交于O点,连结SO.则SA与平面SBD所成的角为∠ASO,SC与平面SBD所成的角为∠CSO,又OA=OC,SA=SC,∴∠ASO=∠CSO.故C正确;由排除法可知选D.
【答案】 D
5.(2014·郑州模拟)设m,n是不同的直线,α,β是不同的平面,下列命题中正确的是( )
A.若m∥α,n⊥β,m⊥n,则α⊥β B.若m∥α,n⊥β,m⊥n,则α∥β C.若m∥α,n⊥β,m∥n,则α⊥β D.若m∥α,n⊥β,m∥n,则α∥β
【解析】 C中,当m∥α,m∥n时,有n∥α或n?α,当n⊥β时,有α⊥β,故C正确.
【答案】 C 二、填空题
图7-5-11
6.如图7-5-11,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有________(填序号).
①平面ABC⊥平面ABD; ②平面ABD⊥平面BCD;
③平面ABC⊥平面BDE,且平面ACD⊥平面BDE; ④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.
【解析】 由AB=CB,AD=CD知AC⊥DE,AC⊥BE,从而AC⊥平面BDE,故③正确.
【答案】 ③
图7-5-12
7.如图7-5-12,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,下列说法正确的是________(填上所有正确的序号).
①不论D折至何位置(不在平面ABC内)都有MN∥平面DEC;