所以
.
练习、求值:
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n项和:1?1,111?4,2?7,???,n?1?3n?2,… aaa111解:设Sn?(1?1)?(?4)?(2?7)?????(n?1?3n?2)
aaa将其每一项拆开再重新组合得
Sn?(1?111?2?????n?1)?(1?4?7?????3n?2) (分组) aaa(3n?1)n(3n?1)n当a=1时,Sn?n?= (分组求和)
226
1n(3n?1)na?a1?n(3n?1)na?当a?1时,Sn?= ?1a?1221?a1?[例8] 求数列{n(n+1)(2n+1)}的前n项和.
32解:设ak?k(k?1)(2k?1)?2k?3k?k
∴ Sn??k(k?1)(2k?1)=?(2kk?1k?1nn3?3k2?k)
将其每一项拆开再重新组合得
Sn=2?k?13nk?3?k??k (分组)
32k?1k?133222nn=2(1?2?????n)?3(1?2?????n)?(1?2?????n)
n2(n?1)2n(n?1)(2n?1)n(n?1)?? = (分组求和) 222n(n?1)2(n?2) =
2
五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
sin1????tan(n?1)?tann(1)an?f(n?1)?f(n) (2) ??cosncos(n?1)(2n)2111111?1?(?) ??(3)an? (4)an?(2n?1)(2n?1)22n?12n?1n(n?1)nn?1(5)an?1111?[?]
n(n?1)(n?2)2n(n?1)(n?1)(n?2)n?212(n?1)?n1111?n??n??,则S?1? nn(n?1)2n(n?1)2n?2n?1(n?1)2n(n?1)2n(6) an?(7)an?1111?(?)
(An?B)(An?C)C?BAn?BAn?C1n?n?1?n?1?n
(8)an?
7
[例9] 求数列
11?2,12?31,???,1n?n?1,???的前n项和.
解:设an?n?n?11??n?1?n (裂项)
1则 Sn?1????? (裂项求和)
1?22?3n?n?1 =(2?1)?(3?2)?????(n?1?n) =n?1?1 [例10] 在数列{a12nn}中,an?n?1?n?1?????n?1,又b2n?a,求数列{bn}的前n项的和. n?an?1解: ∵ a1n?n?1?2n?1?????nn?1?n2 ∴ b211n?nn?1?8(n?n?1) (裂项)2?2∴ 数列{bn}的前n项和
S1111n?8[(1?2)?(2?3)?(3?1)?????(14n?1n?1)] (裂项求和) =8(1?1n?1) =
8nn?1 [例11] 求证:111cos1?cos0?cos1??cos1?cos2??????cos88?cos89??sin21? 解:设S?1cos0?cos1??1cos1?cos2??????1cos88?cos89? ∵sin1?cosn?cos(n?1)??tan(n?1)??tann? (裂项) ∴S?111cos0?cos1??cos1?cos2??????cos88?cos89? (裂项求和) =1sin1?{(tan1??tan0?)?(tan2??tan1?)?(tan3??tan2?)?[tan89??tan88?]} =
1sin1?(tan89?tan0)=sin1??cot1?=cos1???1sin21? ∴ 原等式成立
8
答案:
六、分段求和法(合并法求和)
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.
解:设Sn= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°
∵ cosn??cos(180?n) (找特殊性质项)
∴Sn= (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···
+(cos89°+ cos91°)+ cos90° (合并求和)
= 0
[例13] 数列{an}:a1?1,a2?3,a3?2,an?2?an?1?an,求S2002.
解:设S2002=a1?a2?a3?????a2002
由a1?1,a2?3,a3?2,an?2?an?1?an可得
???a4??1,a5??3,a6??2,
a7?1,a8?3,a9?2,a10??1,a11??3,a12??2,
……
a6k?1?1,a6k?2?3,a6k?3?2,a6k?4??1,a6k?5??3,a6k?6??2
∵ a6k?1?a6k?2?a6k?3?a6k?4?a6k?5?a6k?6?0 (找特殊性质项) ∴ S2002=a1?a2?a3?????a2002 (合并求和)
9
=(a1?a2?a3????a6)?(a7?a8????a12)?????(a6k?1?a6k?2?????a6k?6)
?????(a1993?a1994?????a1998)?a1999?a2000?a2001?a2002
=a1999?a2000?a2001?a2002 =a6k?1?a6k?2?a6k?3?a6k?4 =5
[例14] 在各项均为正数的等比数列中,若a5a6?9,求log3a1?log3a2?????log3a10的值.
解:设Sn?log3a1?log3a2?????log3a10
由等比数列的性质 m?n?p?q?aman?apaq (找特殊性质项) 和对数的运算性质 logaM?logaN?logaM?N 得
Sn?(log3a1?log3a10)?(log3a2?log3a9)?????(log3a5?log3a6) (合并求和)
=(log3a1?a10)?(log3a2?a9)?????(log3a5?a6) =log39?log39?????log39 =10
七、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.
[例15] 求1?11?111?????111??1之和. ????n个1解:由于111??????1?k个111?999???9?(10k?1) (找通项及特征) ?????99k个1n个1∴ 1?11?111?????111??1 ????=
11111(10?1)?(102?1)?(103?1)?????(10n?1) (分组求和) 9999111(10?102?103?????10n)?(1??1??1??????1) ????99n个110
=